嗜水气单胞菌zntR调控的生理功能及其机制研究
作者:
基金项目:

国家自然科学基金(31670129)


Physiological function and mechanism of zntR gene regulation in Aeromonas hydrophila
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] ZntR是一种金属调控蛋白,可催化锌外排基因的转录激活,防止细胞内二价Zn离子过量,但其对细菌生理功能的影响目前尚不清楚。[方法] 本研究构建了嗜水气单胞菌ATCC7966(Aeromonas hydrophilaA.h)的zntR缺失株及补救株,对菌株的生物被膜形成能力、溶血活性、运动能力和响应金属离子胁迫等生理表型进行评估。[结果] 敲除zntR基因的菌株对锌和铬离子胁迫敏感、对钴离子胁迫耐受,并且生物被膜形成能力下降、运动能力增强,这些表型在其补救菌株中均能得到恢复。进一步利用DIA定量蛋白质组学技术比较野生株和zntR缺失株的蛋白表达差异,发现ZntR还可能参与双组分系统、细菌的趋化性等代谢通路的调控。[结论] 该研究结果可为今后深入探讨zntR转录因子参与细菌生理功能的调控机制提供理论依据。

    Abstract:

    [Objective] ZntR is a metal regulatory protein, which can catalyze the transcriptional activation of zinc efflux genes, thus controlling the intracellular Zn(II) from toxic. However, the effect of zntR on bacterial biological function remains unclear.[Methods] In this study, we constructed Aeromonas hydrophila (A.h) ∆zntR deletion strain and ∆zntR::zntR rescued strain to evaluate the biofilm formation ability, hemolytic activity, motility ability, the characters of responding to metal ion stress and other physiological phenotypes.[Results] The results showed that zntR deletion strain was sensitive to zinc and chromium stress and tolerant to cobalt ion stress, meanwhile, the biofilm formation ability was decreased and the movement ability was enhanced. These phenotypes could be recovered in the rescue strains. Furthermore, the differential protein expression between wild-type strain and zntR deletion strain was compared by DIA based quantitative proteomics. Results showed that zntR may also be involved in the regulation of two-component system, bacterial chemotaxis and other metabolic pathways.[Conclusion] The above research can provide theoretical basis for further study on the regulation mechanism of ZntR transcription factors in bacterial physiological function.

    参考文献
    [1] Riccardi G, Milano A, Pasca MR, Nies DH. Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiology Letters, 2008, 287(1):1-7.
    [2] Foster AW, Osman D, Robinson NJ. Metal preferences and metallation. Journal of Biological Chemistry, 2014, 289(41):28095-28103.
    [3] Xu FF, Imlay JA. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Applied and Environmental Microbiology, 2012, 78(10):3614-3621.
    [4] Waldron KJ, Robinson NJ. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Reviews Microbiology, 2009, 7(1):25-35.
    [5] Zhu ZY, Hua YK, Hu TT, Zhang MJ, Yang Y, Gao Y. Advances in microbial metal response proteins. Microbiology China, 2018, 45(8):1794-1803. (in Chinese) 朱振宇, 华垚堃, 胡婷婷, 张梦君, 杨宇, 高宇. 微生物金属响应蛋白研究进展. 微生物学通报, 2018, 45(8):1794-1803.
    [6] Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP. ZntR is a Zn (II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology, 1999, 31(3):893-902.
    [7] Wang D, Hosteen O, Fierke C A. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. Journal of Inorganic Biochemistry, 2012, 111:173-181.
    [8] Pruteanu M, Neher SB, Baker TA. Ligand-controlled proteolysis of the Escherichia coli transcriptional regulator ZntR. Journal of Bacteriology, 2007, 189(8):3017-3025.
    [9] Chaoprasid P, Nookabkaew S, Sukchawalit R, Mongkolsuk S. Roles of Agrobacterium tumefaciens C58ZntA and ZntB and the transcriptional regulator ZntR in controlling Cd2+/Zn2+/Co2+ resistance and the peroxide stress response. Microbiology, 2015, 161(9):1730-1740.
    [10] Singh VK, Xiong AM, Usgaard TR, Chakrabarti S, Deora R, Misra TK, Jayaswal RK. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Molecular Microbiology, 1999, 33(1):200-207.
    [11] Zhao HJ, Wang Y, Guo MH, Mu MY, Yu HX, Xing MW. Grass carps co-exposed to environmentally relevant concentrations of cypermethrin and sulfamethoxazole bear immunodeficiency and are vulnerable to subsequent Aeromonas hydrophila infection. Environmental Pollution, 2020, 266:115156.
    [12] Barroso KCM, Previato-Mello M, Batista BB, Batista JH, da Silva Neto JF. EmrR-dependent upregulation of the efflux pump EmrCAB contributes to antibiotic resistance in Chromobacterium violaceum. Frontiers in Microbiology, 2018, 9:2756.
    [13] Zeng J, Deng WY, Yang WM, Luo HP, Duan XK, Xie LX, Li P, Wang R, Fu TW, Abdalla AE, Xie JP. Mycobacterium tuberculosis Rv1152 is a novel GntR family transcriptional regulator involved in intrinsic vancomycin resistance and is a potential vancomycin adjuvant target. Scientific Reports, 2016, 6(1):28002.
    [14] Jousselin A, Kelley WL, Barras C, Lew DP, Renzoni A. The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance. Antimicrobial Agents and Chemotherapy, 2013, 57(7):3283-3292.
    [15] Zhou D, Yang R. Global analysis of gene transcription regulation in prokaryotes. Cellular and Molecular Life Sciences, 2006, 63(19):2260-2290.
    [16] Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang XD, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 2005, 69(2):326-356.
    [17] Grove A. Regulation of metabolic pathways by MarR family transcription factors. Computational and Structural Biotechnology Journal, 2017, 15:366-371.
    [18] Pennella MA, Arunkumar AI, Giedroc DP. Individual metal ligands play distinct functional roles in the Zinc sensor Staphylococcus aureus CzrA. Journal of Molecular Biology, 2006, 356(5):1124-1136.
    [19] Wang TT, Chen KQ, Gao F, Kang YW, Chaudhry MT, Wang Z, Wang Y, Shen XH. ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis. Journal of Microbiology, 2017, 55(6):448-456.
    [20] Caswell CC. The role of zinc in the biology and virulence of Brucella strains//Roop II R, Caswell C. Metals and the biology and virulence of Brucella. Cham:Springer, 2017:63-72.
    [21] Hantke K. Bacterial zinc transporters and regulators//Maret W. Zinc Biochemistry, physiology, and homeostasis. Dordrecht:Springer, 2001:53-63.
    [22] Rosen BP. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2002, 133(3):689-693.
    [23] Wu WL, Liao JH, Lin GH, Lin MH, Chang YH, Liang SY, Yang FL, Khoo KH, Wu SH. Phosphoproteomic analysis reveals the effects of PilF phosphorylation on type IV pilus and biofilm formation in Thermus thermophilus HB27. Molecular & Cellular Proteomics, 2013, 12(10):2701-2713.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林月绪,张丽珊,陈加臻,农添植,邢方婷,林向民,谢小芳. 嗜水气单胞菌zntR调控的生理功能及其机制研究[J]. 微生物学报, 2021, 61(9): 2765-2775

复制
分享
文章指标
  • 点击次数:428
  • 下载次数: 1209
  • HTML阅读次数: 1060
  • 引用次数: 0
历史
  • 收稿日期:2020-11-05
  • 最后修改日期:2020-12-10
  • 在线发布日期: 2021-09-04
文章二维码