基于RNA-Seq技术分析鼠源宿主防御肽对铜绿假单胞菌成熟生物被膜的清除作用
作者:
基金项目:

重庆市研究生科研创新项目(CYS21134);中央高校基本科研业务费专项资金(XDJK2019B040);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0466)


Eradication effect of Pseudomonas aeruginosa biofilms by mouse host defense peptide based on RNA-Seq technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 利用RNA-Seq技术探究修饰后的鼠源宿主防御肽CRAMP对铜绿假单胞菌PAO1成熟生物被膜的影响。[方法] 采用结晶紫法检测生物被膜量,激光共聚焦扫描显微镜(CLSM)观察生物被膜形态学变化;利用Illumina二代高通量测序平台,采用PE150测序策略分析了CRAMP修饰肽干预PAO1生物被膜与对照组在转录水平的基因表达差异;利用1,3-萘二酚方法测定了PAO1生物被膜中藻酸盐含量。[结果] CRAMP修饰肽能显著减少PAO1成熟生物被膜量,并且在0.98-62.50 μg/mL范围内呈一定浓度依赖性,CLSM显示CRAMP修饰肽能够显著减少细菌总荧光强度。转录组测序获得了12636700段干净读对,共鉴定出1582个差异基因,发现800个基因表达上调,782个基因表达下调。GO功能富集分析显示,1226个基因比对到GO功能分析数据库,在这些差异表达基因中,与分子功能、生物过程和细胞组成有关。KEGG通路富集分析显示,有603个表达差异显著基因比对到KEGG中的96条代谢途径,其中主要是各类氨基酸代谢途径、脂肪酸代谢途径、三羧酸循环、生物被膜调控系统等。分析发现CRAMP修饰肽可能作用于PAO1 c-di-GMP系统,增强细菌运动性和生物被膜分散,并且与其密度感应(quorum sensing,QS)系统和藻酸盐合成相关。最后经验证,CRAMP修饰肽显著减少了PAO1成熟生物被膜中藻酸盐的含量。[结论] CRAMP修饰肽对PAO1成熟生物被膜具有明显的清除作用,且能导致成熟生物被膜藻酸盐含量下降。通过转录组数据分析,可能是由于CRAMP修饰肽使PAO1 c-di-GMP水平下调导致的,具体机制还有待进一步探究。

    Abstract:

    [Objective] This study aimed to investigate the effect of modified mouse host defense peptide CRAMP on the mature biofilm of Pseudomonas aeruginosa PAO1 srtain based on RNA-Seq technology.[Methods] Crystal violet method was used to detect the biofilm biomass, and laser confocal scanning microscope (CLSM) was used to observe the morphological changes of biofilms. The gene expression differences at transcription level between biofilms treated with CRAMP and the non-peptide control were analyzed by the PE150 sequencing strategy using Illumina second-generation high-throughput sequencing platform. The content of alginate in PAO1 biofilms was determined by the 1,3-Dihydroxynaphthalene method.[Results] The biofilm biomass was significantly reduced by modified peptide CRAMP at the range of 0.98-62.50 μg/mL. CLSM showed that CRAMP could significantly reduce the total fluorescence intensity of biofilms. The results showed that 12636700 clean-read pairs were obtained by transcriptome sequencing. A total of 1582 differential genes were identified, including 800 genes that were up-regulated, and 782 genes were down-regulated. The GO functional enrichment analysis showed that 1226 genes were compared to the GO functional analysis database. Among these differentially expressed genes, they were related to molecular function, biological process, and cell composition. Enrichment analysis of the KEGG pathway showed that 603 differentially expressed genes were compared with 96 metabolic pathways in KEGG. There are various kinds of amino acid metabolism pathways, fatty acid metabolism pathway, tricarboxylic acid cycle, biofilm regulatory system, and so on. It was found that modified peptide CRAMP may act on PAO1 c-di-GMP system, enhance bacterial motility and biofilm dispersion, and be related to the quorum sensing (QS) system and alginate synthesis. Finally, it was verified that the modified peptide CRAMP significantly reduced the content of alginate in PAO1 biofilms.[Conclusion] The modified peptide CRAMP has an impair effect on PAO1 mature biofilms and can lead to the decrease of alginate content in mature biofilm. Transcriptomics analysis implied that CRAMP might exert its effectiveness by reducing the level of PAO1 c-di-GMP, and the mechanism remains to be further explored.

    参考文献
    [1] Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa:a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International, 2015, 2015:759348.
    [2] Haney EF, Trimble MJ, Cheng JT, Valle Q, Hancock REW. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules, 2018, 8(2):29.
    [3] Jacques M, Aragon V, Tremblay YDN. Biofilm Formation in Bacterial Pathogens of Veterinary Importance. Animal Health Research Reviews, 2010, 11(2):97-121.
    [4] Mwangi J, Yin YZ, Wang G, Yang M, Li Y, Zhang ZY, Lai R. The Antimicrobial Peptide ZY4 Combats Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Infection. Proceedings of the National Academy of Sciences, 2019, 116(52):26516-26522.
    [5] Mnif S, Jardak M, Graiet I, Abid S, Driss D, Kharrat N. The novel cationic cell-penetrating peptide PEP-NJSM is highly active against Staphylococcus epidermidis biofilm. International Journal of Biological Macromolecules, 2019, 125:262-269.
    [6] Wang GS, Mishra B, Epand RF, Epand RM. High-Quality 3D Structures Shine Light On Antibacterial, Anti-Biofilm and Antiviral Activities of Human Cathelicidin LL-37 and its Fragments. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014, 1838(9):2160-2172.
    [7] 李杨. Cathelicidin相关抗菌肽(CRAMP)在炎性肠病及哮喘小鼠模型中的免疫调控作用与机制. 北京协和医学院博士学位论文, 2016.
    [8] Chen HW, Wubbolts RW, Haagsman HP, Veldhuizen EJA. Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Scientific Reports, 2018, 8(1).
    [9] 陈一强. 绿原酸对铜绿假单胞菌生物膜抑制作用及其机制的体内外研究. 广西医科大学博士学位论文, 2010.
    [10] Qi XZ, Liu L, Wang J. RNA-Seq Reveals Changes of Gene Expression and Cellular Metabolism Caused by Exogenous Oxidative Stress (H2O2) in Foc4. Acta Microbiologica Sinica, 2019, 59(5):891-906. (in Chinese) 齐兴柱, 刘磊, 汪军. RNA-Seq揭示Foc4在外源氧化胁迫(H2O2)下的基因表达及细胞代谢变化. 微生物学报, 2019, 59(5):891-906.
    [11] Zheng HW, Singh N, Shetye GS, Jin YC, Li D, Luk YY. Synthetic analogs of rhamnolipids modulate structured biofilms formed by rhamnolipid-nonproducing mutant of Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry, 2017, 25(6):1830-1838.
    [12] Li B, Li B, Tian YW, Wang YR, Dou J, Wang H, Zhou CL. The anti-biofilm activity against drug-resistance bacterial of antimicrobial peptide BF-30in vitro. Pharmaceutical Biotechnology, 2015, 22(1):14-19. (in Chinese) 李博, 李冰, 田玉伟, 王嫣蓉, 窦洁, 王慧, 周长林. 抗菌肽BF-30体外抗耐药细菌生物被膜的研究. 药物生物技术, 2015, 22(1):14-19.
    [13] Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH. VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Molecular Microbiology, 2005, 58(2):552-564.
    [14] Rampioni G, Schuster M, Greenberg EP, Zennaro E, Leoni L. Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiology Letters, 2009, 301(2):210-217.
    [15] Kang HP, Gan JH, Zhao JR, Kong WN, Zhang J, Zhu M, Li F, Song YQ, Qin J, Liang HH. Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Research, 2017, 45(2):699-710.
    [16] Cochran W L, Suh S J, Mcfeters G A, Stewart P S. Role of RpoS and AlgT in Pseudomonas aeruginosa Biofilm Resistance to Hydrogen Peroxide and Monochloramine. Journal of Applied Microbiology, 2000, 88(3):546-553.
    [17] Zhao LM, Sun HF, Liu ZJ, Lin C, Mao ZZ. Regulation in EPS biosynthesis and transportation by cyclic diguanylate. Microbiology China, 2017, 44(5):1196-1205. (in Chinese) 赵腊梅, 孙惠芳, 刘正杰, 林春, 毛自朝. C-di-GMP对细菌胞外多糖合成与运输的调控. 微生物学通报, 2017, 44(5):1196-1205.
    [18] Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathogens, 2009, 5(6):e1000483.
    [19] Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ. The Pseudomonas aeruginosa Ribbon-Helix-Helix DNA-binding Protein AlgZ (AmrZ) Controls Twitching Motility and Biogenesis of Type IV Pili. JournaL of Bacteriology, 2006, 188(1):132-140.
    [20] Hou LL, Debru A, Chen QQ, Bao QY, Li KW. AmrZ Regulates Swarming Motility through Cyclic di-GMP-Dependent Motility Inhibition and Controlling Pel Polysaccharide Production in Pseudomonas aeruginosa PA14. Frontiers in Microbiology, 2019:10.
    [21] Schurr MJ. Which bacterial biofilm exopolysaccharide is preferred, Psl or alginate? Journal of Bacteriology, 2013, 195(8):1623-1626.
    [22] Byrd MS, Sadovskaya I, Vinogradov E, Lu HP, Sprinkle AB, Richardson SH, Ma LY, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Molecular Microbiology, 2009, 73(4):622-638.
    [23] Zhou E, Seminara AB, Kim SK, Hall CL, Wang Y, Lee VT. Thiol-benzo-triazolo-quinazolinone inhibits Alg44 binding to c-di-GMP and reduces alginate production by Pseudomonas aeruginosa. ACS Chemical Biology, 2017, 12(12):3076-3085.
    [24] Wang CC, Chen WH, Xia AG, Zhang RR, Huang YJ, Yang S, Ni L, Jin F. Carbon Starvation Induces the Expression of PprB-Regulated Genes in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2019, 85(22). DOI:10.1101/639112.
    [25] Venturi V, Otten M, Korse V, Brouwer B, Leong J, Weisbeek P. Alginate Regulatory and Biosynthetic Gene Homologs in Pseudomonas Putida WCS358:Correlation with the Siderophore Regulatory Gene pfrA. Gene, 1995, 155(1):83-88.
    相似文献
    引证文献
引用本文

张阳,程鹏,熊静,李晓芬,李会,王士源,彭练慈,韩玉竹,刘娟,陈红伟. 基于RNA-Seq技术分析鼠源宿主防御肽对铜绿假单胞菌成熟生物被膜的清除作用[J]. 微生物学报, 2021, 61(9): 2843-2853

复制
相关视频

分享
文章指标
  • 点击次数:343
  • 下载次数: 824
  • HTML阅读次数: 1176
  • 引用次数: 0
历史
  • 收稿日期:2020-11-16
  • 最后修改日期:2021-03-10
  • 在线发布日期: 2021-09-04
文章二维码