优化Bacillus subtilis对异源β-1,4-内切木聚糖酶分泌表达的研究
作者:
基金项目:

江苏省自然科学基金(BE2018055)


Optimization of secretion of heterologous endo-β-1,4-xylanase in Bacillus subtilis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 基于信号肽和信号肽酶在分泌系统中的重要作用,探索短小芽孢杆菌来源中性β-1,4-内切木聚糖酶在Bacillus subtilis中的重组分泌表达与优化。[方法] 首先,从短小芽孢杆菌基因组DNA中扩增β-1,4-内切木聚糖酶全长基因,连接到pWB980载体P43启动子下游,转化B.subtilis WB800构建重组菌NZ-X。之后,构建信号肽筛选载体,对23个从B.subtilis 168基因组DNA中扩增得到的信号肽进行筛选。最后,以B.subtilis WB800的xynA基因为整合位点,分别整合过表达SipS和SipT两个主要信号肽酶,考察其对融合不同信号肽异源蛋白分泌的影响。[结果] 重组菌NZ-X成功实现β-1,4-内切木聚糖酶的分泌表达,摇瓶发酵上清液酶活为5.33 U/mL,信号肽筛选结果发现YlaE、YfhK、EglS、YqxI、YpjP信号肽与β-1,4-内切木聚糖酶契合度较高,对应酶活依次为7.15、6.69、6.36、6.32、6.18 U/mL,其中SipS信号肽酶对融合YfhK信号肽的β-1,4-内切木聚糖酶的分泌促进作用最大,摇瓶发酵上清液酶活提高到10.64 U/mL,为NZ-X的1.99倍。[结论] 信号肽优化与信号肽酶过表达联用可有效提高B.subtilis中异源蛋白的分泌表达量。

    Abstract:

    [Objective] We aimed to perform and optimize the recombinant secretory expression of neutral endo-β-1,4-xylanase derived from Bacillus pumilus in Bacillus subtilis WB800 on the basis of important role of signal peptide and signal peptidase.[Methods] We amplified the full-length neutral endo-β-1,4-xylanase gene from B. pumilus genomic DNA and then ligated to the downstream of the P43 promoter in the pWB980 vector. Thereafter, the recombinant vector was transformed into B. subtilis WB800 to construct the recombinant strain NZ-X. Signal peptides were screened among 23 signal peptides that were amplified from B. subtilis 168 genomic DNA. On this basis, we constructed two strains that overexpress two signal peptidases (SipS and SipT), respectively. And the effect of these two signal peptidases on the secretion of endo-β-1,4-xylanase was investigated.[Results] Neutral endo-β-1,4-xylanase was successfully secreted from the recombinant strain NZ-X and the enzyme activity in supernatant was 5.33 U/mL via shake flask fermentation. The results of signal peptide screening indicated that five signal peptides (YlaE, YfhK, EglS, YqxI, YpjP) were effective, and the enzyme activities were 7.15, 6.69, 6.36, 6.32, 6.18 U/mL, respectively. Among these signal peptides, the secretion of endo-β-1,4-xylanase was promoted mostly by SipS signal peptidase when fusion with YfhK signal peptide. The enzyme activity could be increased to 10.64 U/mL, which was 1.99 times than that of NZ-X.[Conclusion]] The secretion of heterologous proteins in B. subtilis could be improved effectively through signal peptide optimization and signal peptidase overexpression.

    参考文献
    [1] Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 2005, 29(1):3-23.
    [2] Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. Xylanases from fungi:properties and industrial applications. Applied Microbiology and Biotechnology, 2005, 67(5):577-591.
    [3] Teng C, Lu FZ, Fan GS, Li XT. Advances in xylanase and its application in food industry. Biotechnology & Business, 2019(4):34-41. (in Chinese) 滕超, 鹿发展, 范光森, 李秀婷. 木聚糖酶的研究进展及其在食品领域的应用. 生物产业技术, 2019(4):34-41.
    [4] Li JP, Bao CJ, Chen G, Zhang ST. Research advances in heterologous expression of xylanase. China Biotechnology, 2019, 39(7):91-99. (in Chinese) 李吉萍, 包昌杰, 陈光, 张斯童. 木聚糖酶异源表达的研究进展. 中国生物工程杂志, 2019, 39(7):91-99.
    [5] Kalinina AN, Borshchevskaya LN, Gordeeva TL, Sineoky SP. Expression of the xylanase gene from pyromyces finnis in Pichia pastoris and characterization of the recombinant protein. Applied Biochemistry and Microbiology, 2020, 56(7):787-793.
    [6] Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 2004, 50(1):1-17.
    [7] Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. Systematic screening of all signal peptides from Bacillus subtilis:a powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria. Journal of Molecular Biology, 2006, 362(3):393-402.
    [8] Zhang WW, Yang MM, Yang YD, Zhan J, Zhou YQ, Zhao X. Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening. Applied Microbiology and Biotechnology, 2016, 100(20):8745-8756.
    [9] Fu G, Liu JL, Li JS, Zhu BW, Zhang DW. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2018, 66(50):13141-13151.
    [10] Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology, 2010, 76(19):6370-6376.
    [11] Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 2000, 64(3):515-547.
    [12] Van Dijl JM, De Jong A, Vehmaanperä J, Venema G, Bron S. Signal peptidase I of Bacillus subtilis:patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. The EMBO Journal, 1992, 11(8):2819-2828.
    [13] Dijl JM, Jong A, Smith H, Bron S, Venema G. Signal peptidase I overproduction results in increased efficiencies of export and maturation of hybrid secretory proteins in Escherichia coli. Molecular and General Genetics MGG, 1991, 227(1):40-48.
    [14] Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, De Jong A, Venema G, Bron S, Maarten van Dijl J. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Molecular Microbiology, 1996, 22(4):605-618.
    [15] Bron S, Bolhuis A, Tjalsma H, Holsappel S, Venema G, van Dijl JM. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. Journal of Biotechnology, 1998, 64(1):3-13.
    [16] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3):426-428.
    [17] Li ZW, Li YR, Gu ZH, Ding ZY, Zhang L, Xu S, Shi GY. Chinese Journal of Biotechnology, 2019, 35(3):458-471. (in Chinese) 李宗文, 李由然, 顾正华, 丁重阳, 张梁, 徐沙, 石贵阳. 地衣芽胞杆菌FLP/FRT基因编辑系统的构建及验证. 生物工程学报, 2019, 35(3):458-471.
    [18] Zhong C, You C, Wei P, Zhang YHP. Simple Cloning by Prolonged Overlap Extension-PCR with Application to the Preparation of Large-Size Random Gene Mutagenesis Library in Escherichia coli. Synthetic DNA, 2017, 1472:49-61.
    [19] Vinayavekhin N, Mahipant G, Vangnai AS, Sangvanich P. Untargeted metabolomics analysis revealed changes in the composition of glycerolipids and phospholipids in Bacillus subtilis under 1-butanol stress. Applied Microbiology and Biotechnology, 2015, 99(14):5971-5983.
    [20] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001, 29(9):e45.
    [21] Martoglio B, Dobberstein B. Signal sequences:more than just greasy peptides. Trends in Cell Biology, 1998, 8(10):410-415.
    [22] Von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry, 1983, 133(1):17-21.
    [23] Zalucki YM, Jennings MP. Signal peptidase I processed secretory signal sequences:Selection for and against specific amino acids at the second position of mature protein. Biochemical and Biophysical Research Communications, 2017, 483(3):972-977.
    [24] Duffaud G, Inouye M. Signal peptidases recognize a structural feature at the cleavage site of secretory proteins. Journal of Biological Chemistry, 1988, 263(21):10224-10228.
    [25] Chatterjee S, Suciu D, Dalbey RE, Kahn PC, Inouye M. Determination of Km andkcat for Signal Peptidase I Using a Full Length Secretory Precursor, pro-OmpA-nuclease A. Journal of Molecular Biology, 1995, 245(4):311-314.
    [26] Choo KH, Tong JC, Ranganathan S. Modeling Escherichia coli signal peptidase complex with bound substrate:determinants in the mature peptide influencing signal peptide cleavage. BMC Bioinformatics, 2008, 9(1):1-7.
    [27] Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680):313-320.
    [28] Tian RZ, Liu YF, Li JH, Liu L, Du GC. Progress in the regulatory tools of gene expression for model microorganisms. Synthetic Biology Journal, 2020, 1(4):454-469. (in Chinese) 田荣臻, 刘延峰, 李江华, 刘龙, 堵国成. 典型模式微生物基因表达精细调控工具的研究进展. 合成生物学, 2020, 1(4):454-469.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐善恒,辛瑜,刘建民,石贵阳,丁重阳,顾正华,李由然,张梁. 优化Bacillus subtilis对异源β-1,4-内切木聚糖酶分泌表达的研究[J]. 微生物学报, 2021, 61(10): 3222-3234

复制
分享
文章指标
  • 点击次数:328
  • 下载次数: 930
  • HTML阅读次数: 1192
  • 引用次数: 0
历史
  • 收稿日期:2020-12-29
  • 最后修改日期:2021-03-07
  • 在线发布日期: 2021-09-29
文章二维码