基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用
作者:
基金项目:

国家科技基础性工作专项(2015FY110700);国家自然科学基金(31870500,41501273)


Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 为获得高效固氮菌株,充分研究利用土壤固氮菌资源。[方法] 选取固氮能力较高的紫色土发育水稻土,采用富集纯化法分离固氮微生物菌株。通过16S rRNA基因系统发育分析和全基因组相关指数比较对新分离菌株进行物种鉴定。采用乙炔还原法和15N2示踪法定量测定新分离菌株的固氮能力,通过培养特性和接种效果初步研究固氮菌株的促生作用。[结果] 从紫色土发育水稻土中分离得到1株可在无氮培养基上快速生长的菌株P208。基于16S rRNA基因和基因组92个核心基因的系统发育分析结果表明,新分离菌株P208与Azotobacter chroococcum IAM 12666T(=ATCC 9043T)系统发育距离最近(16S rRNA基因相似度为99.79%)。菌株P208与A.chroococcum ATCC 9043T的基因组平均核苷酸一致性(ANI)、平均氨基酸一致性(AAI)和数字DNA-DNA杂交值(dDDH)高于物种分类阈值(ANI>;95%-96%,AAI>;95%-96%,dDDH>;70%),最大唯一匹配指数(MUMi)低于物种分类阈值(<;0.33),得出新分离菌株P208为褐球固氮菌(A.chroococcum)。A.chroococcum P208固氮活性为模式菌株A.chroococcum ATCC 9043T的2.61倍。除固氮能力外,A.chroococcum P208具有IAA生成、溶磷活性和铁载体生成等促进植物生长潜力的培养特性,室内培养条件下接种A.chroococcum P208能够促进水稻、小麦幼苗根系的生长。[结论] 从固氮能力较强的水稻土中分离纯化得到1株具有较强固氮、促生潜力的固氮菌,具有潜在的开发应用价值,可为研究利用生物固氮提供微生物资源。

    Abstract:

    [Objective] The aim of this study is to obtain efficient nitrogen-fixing strains and fully utilize soil nitrogen-fixing microbial resources.[Methods] The Entisol with superior nitrogen fixation capability was selected to isolate nitrogen-fixing strains via enrichment and purification procedure. The identification of newly isolated strain at species level was performed by means of 16S rRNA gene phylogenetic analysis and whole genome correlation index comparison. Quantitative determination of nitrogen fixation activity of newly isolated strain was performed by acetylene reduction assay and 15N2 tracer method. The plant growth promotion potentials of the nitrogen-fixing strain were preliminarily determined through culture characteristics and inoculation effects.[Results] A strain, designated P208, which could grow rapidly in nitrogen-free medium, was isolated from Entisol. Phylogenetic analyses based on 16S rRNA gene and 92 core genes revealed that strain P208 was most phylogenetically closely related to Azotobacter chroococcum IAM 12666T (=ATCC 9043T) (99.79% 16S rRNA gene similarities). The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values based on genome sequences of strain P208 and A. chroococcum ATCC 9043T were higher than the thresholds for species circumscription (ANI>95%-96%, AAI>95%-96%, dDDH>70%), and the maximal unique matches index (MUMi) value was lower than the species circumscription threshold (<0.33). Therefore, The newly isolated strain P208 could be identified as A. chroococcum. The nitrogen fixation activity of A. chroococcum P208 was 2.61 times that of the type strain A. chroococcum ATCC 9043T. In addition to nitrogen fixation, A. chroococcum P208 had plant growth promotion potentials in cultures, such as IAA production, phosphate solubilization and siderophore production. Inoculation with A. chroococcum P208 could promote root growth of rice and wheat seedlings under controlled conditions.[Conclusion]] A strain with superior nitrogen fixation and plant growth promotion potential was isolated and purified from the paddy soil with superior nitrogen fixation capability. It has relatively good development and application potential value, and could provide microbial resource for the study and utilization of biological nitrogen fixation.

    参考文献
    [1] Reed SC, Cleveland CC, Townsend AR. Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests:results from observational and experimental analyses. Biogeochemistry, 2013, 114:135-147.
    [2] Keuter A, Veldkamp E, Corre MD. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices. Soil Biology and Biochemistry, 2014, 70:38-46.
    [3] Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation:a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(1):489-512.
    [4] Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics, 2018, 10(4):523-538.
    [5] Habibi S, Djedidi S, Ohkama-Ohtsu N, Sarhadi WA, Kojima K, Rallos RV, Ramirez MDA, Yamaya H, Sekimoto H, Yokoyama T. Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microbes and Environments, 2019, 34(4):347-355.
    [6] Silva JF, Silva TR, Escobar IEC, Fraiz ACR, Santos JWM, Nascimento TR, Santos JMR, Peters SJW, Melo RF, Signor D, Fernandes-Júnior PI. Screening of plant growth promotion ability among bacteria isolated from field-grown Sorghum under different managements in Brazilian drylands. World Journal of Microbiology and Biotechnology, 2018, 34(12):1-10.
    [7] Dos Santos SG, Chaves VA, Da Silva Ribeiro F, Alves GC, Reis VM. Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Applied Soil Ecology, 2019, 133:12-23.
    [8] Banik A, Dash GK, Swain P, Kumar U, Mukhopadhyay SK, Dangar TK. Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2(MCC 3432) can increase rice yield under green house and field condition. Microbiological Research, 2019, 219:56-65.
    [9] Shirinbayan S, Khosravi H, Malakouti MJ. Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 2019, 133:138-145.
    [10] Piccinin GG, Braccini AL, Dan LGM, Scapim CA, Ricci TT, Bazo GL. Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Industrial Crops and Products, 2013, 43:393-397.
    [11] Cassán F, Diaz-Zorita M. Azospirillum sp. in current agriculture:From the laboratory to the field. Soil Biology and Biochemistry, 2016, 103:117-130.
    [12] Cassán FD, Okon Y, Creus CM. Handbook for Azospirillum. Cham:Springer International Publishing, 2015.
    [13] Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 2007, 75(5):1143-1150.
    [14] Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 2009, 45(1):28-35.
    [15] Overmann J. Significance and future role of microbial resource centers. Systematic and Applied Microbiology, 2015, 38(4):258-265.
    [16] Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R. Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns:Evidence that unexplored sites constitute sources of cultivable novelty. Systematic and Applied Microbiology, 2015, 38(4):266-275.
    [17] Li YX, Guo PY, Sun JG. Isolation, identification, phylogeny and growth promoting characteristics of endophytic diazotrophs from Tuber and root crops. Scientia Agricultura Sinica, 2017, 50(1):104-122. (in Chinese) 李艳星, 郭平毅, 孙建光. 块根块茎类作物内生固氮菌分离鉴定、系统发育与促生特性. 中国农业科学, 2017, 50(1):104-122.
    [18] Sun JG, Luo Q, Gao M, Hu HY, Xu J, Zhou YQ. Isolation and phylogeny of nitrogen-fixing endophytic bacteria in wheat, rice, maize, Chinese cabbage and celery. Scientia Agricultura Sinica, 2012, 45(7):1303-1317. (in Chinese) 孙建光, 罗琼, 高淼, 胡海燕, 徐晶, 周义清. 小麦、水稻、玉米、白菜、芹菜内生固氮菌及其系统发育. 中国农业科学, 2012, 45(7):1303-1317.
    [19] Sun JG, Xu J, Hu HY, Zhang YC, Liu J, Wang WB, Sun YH. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Plant Nutrition and Fertilizer Science, 2009, 15(6):1450-1465. (in Chinese) 孙建光, 徐晶, 胡海燕, 张燕春, 刘君, 王文博, 孙燕华. 中国十三省市土壤中非共生固氮微生物菌种资源研究. 植物营养与肥料学报, 2009, 15(6):1450-1465.
    [20] Rilling JI, Acuña JJ, Sadowsky MJ, Jorquera MA. Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Frontiers in Microbiology, 2018, 9:2710. DOI:10.3389/fmicb.2018.02710.
    [21] Rinaudo G, Balandreau J, Dommergues Y. Algal and bacterial non-symbiotic nitrogen fixation in paddy soils. Plant and Soil, 1971, 35(1):471-479.
    [22] Rao VR, Kalininskaia TA, Miller IM. Study of the activity of nonsymbiotic nitrogen fixation in rice field soils using 15N2. Mikrobiologiya, 1973, 42(4):729-734.
    [23] Wang XJ, Liu BJ, Ma J, Zhang YH, Hu TL, Zhang H, Feng YC, Pan HL, Xu ZW, Liu G, Lin XW, Zhu JG, Bei QC, Xie ZB. Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biology and Biochemistry, 2019, 131:81-89.
    [24] Brown ME, Burlingham SK, Jackson RM. Studies on Azotobacter species in soil. Plant and Soil, 1962, 17(3):309-319.
    [25] Lane DJ. 16S/23S rRNA sequencing//Stackebrandt E, Goodfellow M. Nucleic acid techniques in bacterial systematics. New York:Wiley, 1991:115-175.
    [26] Gauri SS, Mandal SM, Mondal KC, Dey S, Pati BR. Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81. Bioresource Technology, 2009, 100(18):4240-4243.
    [27] Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617.
    [28] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [29] Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4):406-425.
    [30] Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15):2114-2120.
    [31] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19(5):455-477.
    [32] Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 2016, 44(14):6614-6624.
    [33] Kim J, Na SI, Kim D, Chun J. UBCG2:Up-to-date bacterial core genes and pipeline for phylogenomic analysis. Journal of Microbiology, 2021, 59(6):609-615.
    [34] Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi HN, Xu XW, de Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1):461-466.
    [35] Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS:a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 2016, 32(6):929-931.
    [36] Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 2013, 14(1):1-14.
    [37] Rodriguez-R LM, Konstantinidis KT. The enveomics collection:a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints, 2016, 4:e1900v1901.
    [38] Deloger M, El Karoui M, Petit MA. A genomic distance based on MUM indicates discontinuity be of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology, 2012, 58:21-28.
    [67] Etesami H, Hosseini HM, Alikhani HA, Mohammadi L. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of Plant Growth Regulation, 2014, 33(3):654-670.
    [68] Khare E, Arora NK. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 2010, 61(1):64-68.
    [69] Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron Chelator-Siderophore:a review. Microbiological Research, 2018, 212/213:103-111.
    [70] Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 2010, 42(8):1229-1235.
    [71] Xie H, Pasternak JJ, Glick BR. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology, 1996, 32(2):67-71.PA, Mroginski LA, Aguilar OM. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 2010, 46(7):727-738.
    [46] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1):47-56.
    [47] Pereyra MA, Ballesteros FM, Creus CM, Sueldo RJ, Barassi CA. Seedlings growth promotion by Azospirillum brasilense under normal and drought conditions remains unaltered in Tebuconazole-treated wheat seeds. European Journal of Soil Biology, 2009, 45(1):20-27.
    [48] Knoth JL, Kim SH, Ettl GJ, Doty SL. Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of maize. GCB Bioenergy, 2013, 5(4):408-418.
    [49] Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):346-351.
    [50] Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45):19126-19131.
    [51] Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. Journal of Bacteriology, 2005, 187(18):6258-6264.
    [52] Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):352-356.
    [53] Li HB, Singh RK, Singh P, Song QQ, Xing YX, Yang LT, Li YR. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontiers in Microbiology, 2017, 8:1268.
    [54] Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A. Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant and Soil, 1997, 194(1/2):45-55.
    [55] Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):316-324.
    [56] Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek, 2017, 110(10):1281-1286.
    [57] Stackebrandt E, Goebel BM. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849.
    [58] Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. The ISME Journal, 2016, 10(7):1642-1655.
    [59] Fox GE, Wisotzkey JD, Jurtshuk P. How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology, 1992, 42(1):166-170.
    [60] Hardy RWF, Holsten RD, Jackson EK, Burns RC. The acetylene-ethylene assay for N2 fixation:laboratory and field evaluation. Plant Physiology, 1968, 43(8):1185-1207.
    [61] Saiz E, Sgouridis F, Drijfhout FP, Ullah S. Biological nitrogen fixation in peatlands:Comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biology and Biochemistry, 2019, 131:157-165.
    [62] Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N(inf2) fixation. Applied and Environmental Microbiology, 1996, 62(3):986-993.
    [63] Hayat R, Ahmed I, Sheirdil RA. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Crop Production for Agricultural Improvement. Dordrecht:Springer Netherlands, 2012:557-579.
    [64] Zahir ZA, Arshad M, Frankenberger WT Jr. Plant growth promoting rhizobacteria:applications and perspectives in agriculture. Advances in Agronomy. Amsterdam:Elsevier, 2003:97-168.
    [65] Kennedy IR, Choudhury ATMA, Kecskés ML. Non-symbiotic bacterial diazotrophs in crop-farming systems:can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, 2004, 36(8):1229-1244.
    [66] Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M. Characterization
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

靳海洋,王慧,张燕辉,胡天龙,林志斌,刘本娟,蔺兴武,谢祖彬. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用[J]. 微生物学报, 2021, 61(10): 3249-3263

复制
分享
文章指标
  • 点击次数:667
  • 下载次数: 1817
  • HTML阅读次数: 2524
  • 引用次数: 0
历史
  • 收稿日期:2021-01-10
  • 最后修改日期:2021-02-15
  • 在线发布日期: 2021-09-29
文章二维码