番茄青枯病拮抗菌的定向筛选及其抗病促生机制研究
作者:
基金项目:

国家重点基础研究发展计划(2016YFD0800605)


Isolation and identification of antagonistic bacteria against tomato bacterial wilt and the mechanisms in disease prevention and plant growth promotion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 从抑病型番茄根际土壤中筛选青枯病的高效拮抗促生菌,阐明其防病促生机制。[方法] 以番茄青枯雷尔氏菌(Ralstonia solanacearum)为靶病原菌,采用平板抑菌圈法,筛选拮抗菌;通过BOX-PCR指纹图谱鉴定菌株多样性,以平板透明圈法评价其产酶活性,并针对抑菌能力强、产酶种类多的拮抗菌开展16S rRNA基因系统发育分析;通过温室试验评价拮抗菌的防病促生能力,并在此基础上通过实时荧光定量PCR研究生防细菌对番茄青枯病的防病促生机制。[结果] 从番茄根际土壤分离获得29株细菌,其中15株对青枯菌具有拮抗功能,进一步通过BOX-PCR指纹图谱、酶活分析获得4株具有潜在防治番茄青枯病、促进生长的功能菌(B2、B5、B20、B23),通过16S rRNA系统发育分析鉴定B2拮抗菌为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),B5和B20拮抗菌为枯草芽孢杆菌(Bacillus subtilis),B23拮抗菌为贝莱斯芽孢杆菌(Bacillus velezensis);温室试验表明,B2、B5、B20、B23拮抗菌的抑病效果分别为35.59%、8.47%、32.20%、96.61%,并且均能显著增加番茄生物量和生理性状,如地上部鲜重、总叶绿素含量、地下部根尖数等。B2、B5、B23拮抗菌显著促进番茄株高和根长,B2、B20、B23拮抗菌显著增加茎粗;而B23拮抗菌显著增加根系分叉数;实时荧光定量分析表明,B2、B20、B23拮抗菌株可促进抗病相关功能基因PR1αPOD1的表达量,B2、B5、B23拮抗菌促进吲哚乙酸(IAA)信号通路应答关键基因ctd1的表达量,B2、B5、B20、B23拮抗菌均降低乙烯(ETH)信号通路应答关键基因ERF2的表达量。[结论] 本研究分离筛选获得4株对番茄青枯病具有显著防治效果以及促进番茄生长的PGPR菌株,可为定向筛选植物促生防病菌提供理论依据。

    Abstract:

    [Objective] Isolation plant growth promoting rhizobacteria (PGPR) from disease-resistant tomato rhizosphere soil to control bacterial wilt caused by Ralstonia solanacearum and improve tomato growth, and explored the mechanisms.[Methods] PGPR bacteria with antibacterial activity was screened from tomato rhizosphere soil by inhibition zone method using a moderately pathogenic Ralstonia solanacearum HN4 as target; The highly similar strains were identified by BOX-PCR fingerprints, and the enzyme-producing activity of different genotype strains was evaluated by the plate transparent circle method; The 16S rRNA phylogenetic analysis was applied to identify the antagonistic strains with strong antibacterial ability and many kinds of enzyme production; The potential antagonistic bacteria were assessed for plant disease prevention and growth promotion in greenhouse, and the plant disease prevention and growth promotion related genes expression level were tested by real-time PCR.[Results] 29 strains were isolated and purified from tomato rhizosphere soil, of which 15 strains had antagonistic function against Ralstonia solanacearum. Moreover, four strains involved in controlling tomato bacterial wilt and promoting growth, were verified by the analysis of BOX-PCR fingerprinting and enzyme activity. In the result of 16S rRNA phylogenetic analysis, strain B2 was identified as Bacillus amyloliquefaciens. Strain B5 and B20 were identified as Bacillus subtilis, respectively. Strain B23 was identified as Bacillus velezensis. In greenhouse experiment, strain B2, B5, B20 and B23 inhibited Ralstonia solanacearum effectively, with the efficiency of 35.59%, 8.47%, 32.20% and 96.61%, respectively. Furthermore, all of them significantly increased the plant fresh weight, the total chlorophyll content and the number of root tips. The strain B2, B5 and B23 efficiently promoted plant height and root length of tomato. The strain B2, B20 and B23 efficiently promoted stem thickness of tomato. And strain B23 efficiently promoted the number of root forks. In the result of real-time PCR, strain B2, B20 and B23 upregulated the expression of PR1α and POD1 gene. Strain B2, B5 and B23 upregulated the expression of ctd1 gene. And strain B2, B5, B20 and B23 downregulated the expression of ERF2 gene.[Conclusion]] In this study, four biocontrol strains were isolated and identified to control tomato bacterial wilt and promote tomato growth, and can provide a theoretical basis for the targeted screening of plant growth-promoting and disease preventing bacteria.

    参考文献
    [1] Solke H, De B. Book review:Bacterial wilt disease and the Ralstonia solanacearum species complex. European Journal of Plant Pathology, 2006, 114:227-228.
    [2] Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13(6):614-629.
    [3] Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ, Park H, Roy N, Kim H, Lee MM, Rubin EM, Lee SW, Kim JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11):1100-1109.
    [4] Chen Y, Yan F, Chai YR, Liu HX, Kolter R, Losick R, Guo JH. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 2013, 15(3):848-864.
    [5] Ji P, Momol MT, Olson SM, Hong J, Pradhanang P, Anith KN, Jones JB. New tactics for bacterial wilt management on tomatoes in the southern us. Acta Horticulturae, 2005(695):153-160.
    [6] Pradhanang PM, Ji P, Momol MT, Olson SM, Mayfield JL, Jones JB. Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Disease, 2005, 89(9):989-993.
    [7] Hanson PM, Licardo O, Hanudin, Wang JF, Chen JT. Diallel analysis of bacterial wilt resistance in tomato derived from different sources. Plant Disease, 1998, 82(1):74-78.
    [8] Sarkar L. Use of chemical pesticides and its environmental occurence in the soil, water and on health:a study on hansqua Tea estate area of west Bengal. Indian Journal of Environmental Protection, 2018, 38(10):806-816.
    [9] Zhang YG, Yang XD, Wei JP, Wang LW, Liu SS, Zhou F. Domestic situation and development trend of grafted seedling of tomato. Horticulture & Seed, 2016, 36(9):5-9. (in Chinese) 张元国, 杨晓东, 魏家鹏, 王林武, 刘树森, 周峰. 国内番茄嫁接育苗现状与发展趋势. 园艺与种苗, 2016, 36(9):5-9.
    [10] Wang J, Long SF, Wang ZW, Chen JW, Jiang FY, Li X. Research progress in controlling tomato bacterial wilt. China Vegetables, 2020(1):22-30. (in Chinese) 王杰, 龙世芳, 王正文, 谌金吾, 姜发洋, 李星. 番茄青枯病防治研究进展. 中国蔬菜, 2020(1):22-30.
    [11] Yuliar, Nion YA, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 2015, 30(1):1-11.
    [12] Cheng L, You CP, Xiao AP. Advance in the study on antagonistic bacteria. Acta Agriculturae Universitis Jiangxiensis, 2003, 25(5):732-737. (in Chinese) 程亮, 游春平, 肖爱萍. 拮抗细菌的研究进展. 江西农业大学学报, 2003, 25(5):732-737.
    [13] Peng Y, Chen XY, Qiu JY, Yang G, Wang WM, Chen LL. Research progress of biocontrol Bacillus. Shandong Agricultural Sciences, 2013, 45(7):138-140. (in Chinese) 彭研, 陈相艳, 裘纪莹, 杨革, 王未名, 陈蕾蕾. 生防芽孢杆菌的研究进展. 山东农业科学, 2013, 45(7):138-140.
    [14] Chen ZY, Liu YF, Liu YZ, Zhang RS. Research progress in biocontrol of Bacillus spp. against plant diseases. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):999-1006. (in Chinese) 陈志谊, 刘永峰, 刘邮洲, 张荣胜. 植物病害生防芽孢杆菌研究进展. 江苏农业学报, 2012, 28(5):999-1006.
    [15] Bal HB, Das S, Dangar TK, Adhya TK. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. Journal of Basic Microbiology, 2013, 53(12):972-984.
    [16] Wang LY, Jiang PP, Gan Y, Chen ZY, Liu YF. Increase of defense enzyme activity and up-expression of defense gene in tomato induced by Bacillus amyloliquefaciens B1619. Chinese Journal of Biological Control, 2017, 33(2):234-240. (in Chinese) 王璐瑶, 蒋盼盼, 甘颖, 陈志谊, 刘永峰. 解淀粉芽胞杆菌B1619诱导番茄防御酶活性提高和抗病相关基因的表达上调. 中国生物防治学报, 2017, 33(2):234-240.
    [17] Xie YS, Xu Q, Wang DC, Wang N, Wang C, Jiang CH, Guo JH. Screening of plant growth-promoting Bacillus subtilis JC01 producing volatile organic compound. Microbiology China, 2016, 43(10):2187-2196. (in Chinese) 谢越盛, 许泉, 王大成, 王宁, 王超, 蒋春号, 郭坚华. 植物根际促生枯草芽孢杆菌JC01筛选. 微生物学通报, 2016, 43(10):2187-2196.
    [18] Wang CX, Zhang QM, Li GF, Dong XL, Li BH. Identification of the antagonistic bacteria BJ1 and its antifungal activity against Valsa ceratosperma. Acta Phytophylacica Sinica, 2012, 39(5):431-437. (in Chinese) 王彩霞, 张清明, 李桂舫, 董向丽, 李保华. 苹果树腐烂病拮抗细菌菌株BJ1的鉴定及其抑菌作用. 植物保护学报, 2012, 39(5):431-437.
    [19] Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 2009, 48(3):252-258.
    [20] Chen Z, Wang QF, Yang H, Lang BT, Yang JS, Li J, Liu Y, Zhang J, Chen CP, Chen Q. Fungal communities diversity in salviae miltiorrhizae planting rhizospheric and non-rhizospheric soil analyzed by PCR-DGGE in Zhongjiang, Sichuan Province. Southwest China Journal of Agricultural Sciences, 2014, 27(5):2040-2044. (in Chinese) 陈章, 王强锋, 杨红, 郎伯涛, 杨季声, 李洁, 刘燕, 张俊, 陈翠平, 陈强. 四川中江丹参根际和非根际土壤真菌种群多样性PCR-DGGE分析. 西南农业学报, 2014, 27(5):2040-2044.
    [21] Li SZ, Chen Y, Yang RH, Zhang CP, Liu Z, Li YL, Chen T, Chen GY, Zou LF. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp.. Acta Microbiologica Sinica, 2019, 59(10):1969-1983. (in Chinese) 李生樟, 陈颖, 杨瑞环, 张翠萍, 刘昭, 李逸朗, 陈涛, 陈功友, 邹丽芳. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定. 微生物学报, 2019, 59(10):1969-1983.
    [22] Fu BZ, Chen QQ, Wei M, Zhu JQ, Yang XH, Li GY, Zou LP, Wang DB. Investigation of walnut bacterial blight pathogens based on 16S-rDNA sequences and RFLP. Journal of Agricultural University of Hebei, 2016, 39(5):63-68. (in Chinese) 傅本重, 陈倩倩, 魏蜜, 朱洁倩, 杨新河, 李国元, 邹礼平, 汪殿蓓. 基于16S rDNA序列的核桃细菌性疫病病原菌遗传多态性分析. 河北农业大学学报, 2016, 39(5):63-68.
    [23] Wang C, Shen CM, Zheng L, Xue QY, Guo JH. Isolation and screening of antagonistic bacterial strains and their biocontrol efficiency against bacterial wilt. Plant Protection, 2014, 40(2):43-47, 69. (in Chinese) 王超, 申成美, 郑丽, 薛庆云, 郭坚华. 烟草青枯病生防细菌的筛选与生防效果研究. 植物保护, 2014, 40(2):43-47, 69.
    [24] Wang N, Wang LY, Zhu K, Hou SS, Chen L, Mi DD, Gui Y, Qi YJ, Jiang CH, Guo JH. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology, 2019, 10:98. DOI:10.3389/fmicb.2019.00098.
    [25] Liu CC, Ren SW, Wang N, Hu ZP. Effect of water-soluble fertilizer on the growth of tomato and the root-knot nematode by adding BRs. Heilongjiang Agricultural Sciences, 2017(9):55-58. (in Chinese) 刘陈晨, 任士伟, 王娜, 胡兆平. 水溶肥添加油菜素内酯对番茄促生及抗根结线虫病的效果. 黑龙江农业科学, 2017(9):55-58.
    [26] Wang C, Wang C, Gao YL, Wang YP, Guo JH. A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. Journal of Plant Growth Regulation, 2016, 35(1):54-64.
    [27] Fuentes A, Ortiz J, Saavedra N, Salazar LA, Meneses C, Arriagada C. Reference gene selection for quantitative real-time PCR in Solanum lycopersicum L. inoculated with the mycorrhizal fungus Rhizophagus irregularis. Plant Physiology and Biochemistry, 2016, 101:124-131.
    [28] Gu SH, Wei Z, Shao ZY, Friman VP, Cao KH, Yang TJ, Kramer J, Wang XF, Li M, Mei XL, Xu YC, Shen QR, Kümmerli R, Jousset A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology, 2020, 5(8):1002-1010.
    [29] Liu F, Liao XQ, Zhou RH, Rao B, Chen W, Huang DY, You JM. Optimization of fermentation mediaum and conditions for Bacillus subtilis BZJN1. Hubei Agricultural Sciences, 2019, 58(20):93-96. (in Chinese) 刘芳, 廖先清, 周荣华, 饶犇, 陈伟, 黄大野, 游景茂. 枯草芽孢杆菌BZJN1发酵培养基和培养条件的优化. 湖北农业科学, 2019, 58(20):93-96.
    [30] Algam S, Xie GL, Li B, Coosemans J, Liu B. Comparative performance of Bacillus spp.in growth promotion and suppression of tomato bacterial wilt caused by Ralstonia solanacearum. Journal of Zhejiang University (Agriculture and Life Sciences), 2004, 30(6):603-610.
    [31] Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology, 2011, 48(2):152-159.
    [32] Zhou Q, Wang X, Su T, Lu M, Xie GL. Optimization of medium and cultural conditions for biocontrol bacterial strain BS2004 against Ralstonia solanacearum and Plasmodiophora brassicae. Chinese Journal of Biological Control, 2012, 28(4):537-544. (in Chinese) 周青, 王笑, 苏婷, 路梅, 谢关林. 青枯病和根肿病生防细菌BS2004的发酵培养基和培养条件优化. 中国生物防治学报, 2012, 28(4):537-544.
    [33] Zhang B, Qiao JQ, Liang XJ, Liu YZ, Chen ZY. Evaluation of antagonistic bacteria against Fusarium oxysporum f. sp. lycopersici and Ralstonia solanacearum. Journal of Plant Protection, 2015, 42(3):353-361. (in Chinese) 张斌, 乔俊卿, 梁雪杰, 刘邮洲, 陈志谊. 番茄枯萎病菌和青枯病菌拮抗细菌的评价. 植物保护学报, 2015, 42(3):353-361.
    [34] Wu K, Su L, Fang ZY, Yuan SF, Wang LL, Shen B, Shen QR. Competitive use of root exudates by Bacillus amyloliquefaciens with Ralstonia solanacearum decreases the pathogenic population density and effectively controls tomato bacterial wilt. Scientia Horticulturae, 2017, 218:132-138.
    [35] Qiao JQ, Chen ZY, Liang XJ, Liu YF, Liu YZ. Biocontrol efficacy on tomato bacterial wilt by Bacillus subtilis Bs916. Chinese Journal of Biological Control, 2016, 32(2):229-234. (in Chinese) 乔俊卿, 陈志谊, 梁雪杰, 刘永锋, 刘邮洲. 枯草芽孢杆菌Bs916防治番茄青枯病. 中国生物防治学报, 2016, 32(2):229-234.
    [36] Zhao WS, Guo QG, Yu WQ, Wang PP, Su ZH, Zhang XY, Lu XY, Ma P, Li SZ. Phosphate-solubilizing characteristics of Bacillus amyloliquefaciens PHODB35 and its growth-promoting effect on tomato. Acta Microbiologica Sinica, 2020, 60(7):1370-1383. (in Chinese) 赵卫松, 郭庆港, 于稳欠, 王培培, 苏振贺, 张晓云, 鹿秀云, 马平, 李社增. 解淀粉芽胞杆菌PHODB35的溶磷特性及其对番茄的促生作用. 微生物学报, 2020, 60(7):1370-1383.
    [37] Zhang CW, Cheng K, Zhang X, Liu B, Du HB, Yao S. Taxonomy and functions of Bacillus velezensis:a review. Food and Fermentation Industries, 2019, 45(17):258-265. (in Chinese) 张彩文, 程坤, 张欣, 刘波, 都海渤, 姚粟. 贝莱斯芽胞杆菌(Bacillus velezensis)分类学及功能研究进展. 食品与发酵工业, 2019, 45(17):258-265.
    [38] Zong Y, Zhao YJ, Liu Y, Yang QL. Study on the inhibitory effect of Bacillus velezensis on Fusarium graminearum. Journal of Nuclear Agricultural Sciences, 2018, 32(2):310-317. (in Chinese) 宗英, 赵月菊, 刘阳, 杨庆利. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究. 核农学报, 2018, 32(2):310-317.
    [39] Yang SQ, Zhang F, Ma GL. Purification and inhibitive mechanism of antagonist substances from Bacillus velezensis S6 strain. Agrochemicals, 2017, 56(9):645-648, 660. (in Chinese) 杨胜清, 张帆, 马贵龙. 贝莱斯芽孢杆菌S6拮抗物质分离纯化及抑菌机理. 农药, 2017, 56(9):645-648, 660.
    [40] Liu XJ, Li HY, Li SN, Zhu BC, Gao TG. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15. Journal of Hebei University:Natural Science Edition, 2019, 39(3):302-310. (in Chinese) 刘雪娇, 李红亚, 李术娜, 朱宝成, 高同国. 贝莱斯芽孢杆菌3A3-15生防和促生机制. 河北大学学报:自然科学版, 2019, 39(3):302-310.
    [41] Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 2005, 51(2):215-229.
    [42] Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology, 2008, 104(1):91-104.
    [43] Van Loon LC, Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006, 44:135-162.
    [44] Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. The Plant Journal, 2003, 34(3):363-375.
    [45] Niu DD, Wang CJ, Guo YH, Jiang CH, Zhang WZ, Wang YP, Guo JH. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Science and Technology, 2012, 22(9):991-1004.
    [46] Huang XF, Zhou D, Guo J, Manter DK, Reardon KF, Vivanco JM. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. Journal of Applied Microbiology, 2015, 118(3):672-684.
    [47] Ryu CM, Farag, Mohamed A, Hu CH, Reddy, Munagala S, Wei HX, Paré, Paul W, Kloepper. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8):4927-4932.
    [48] Huang JF, Wei Z, Tan SY, Mei XL, Yin SX, Shen QR, Xu YC. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Applied Soil Ecology, 2013, 72:79-84.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐欣韵,王宁,丁佳,陈妍,田光明. 番茄青枯病拮抗菌的定向筛选及其抗病促生机制研究[J]. 微生物学报, 2021, 61(10): 3276-3290

复制
分享
文章指标
  • 点击次数:578
  • 下载次数: 1349
  • HTML阅读次数: 2501
  • 引用次数: 0
历史
  • 收稿日期:2021-01-15
  • 最后修改日期:2021-04-22
  • 在线发布日期: 2021-09-29
文章二维码