不同温度下酿酒酵母细胞分裂周期蛋白Cdc5在有丝分裂中的分子动力学研究
作者:
基金项目:

四川省科技厅应用基础重点项目(2018JY0087);四川省科技厅重点研发项目(2018NZ0055)


Kinetics of cell division cyclin protein Cdc5 in budding yeast during mitosis at different temperatures
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究不同温度下酿酒酵母细胞分裂周期蛋白Cdc5蛋白在有丝分裂中的分子动力学变化。[方法] 本研究以酿酒酵母(Saccharomyces cerevisiae)为材料,采用活细胞成像的方法,探究Cdc5蛋白在不同温度下在酿酒酵母有丝分裂过程中的精细分子动力学变化;通过测量OD595绘制生长曲线图,看其宏观的分裂情况是否与微观下Cdc5蛋白的分子动力学变化一致;利用流式细胞术检测细胞的细胞周期变化的情况。[结果] 在胞质分裂时,Cdc5蛋白从母细胞进入子细胞,并在芽颈处发生聚集。25℃条件下细胞中Cdc5蛋白在芽颈处的聚集时间长,37℃条件下Cdc5蛋白在芽颈处聚集时间短,两者间存在显著差异;但两个温度下,细胞中Cdc5蛋白的表达量没有显著性差异。同时,温度也会影响Cdc5蛋白在降解过程中的动力学行为,包括Cdc5蛋白在母细胞与子细胞中荧光强度峰值出现的次数和时间。生长曲线结果显示,酿酒酵母单一细胞分裂周期的变化影响了其宏观的细胞生长,且酵母分裂速度越快,子细胞长宽比越小;细胞周期结果表明,37℃下Cdc5蛋白的动力学变化与酿酒酵母细胞周期变化一致,酿酒酵母细胞周期从G0/G1期进入S期,亦加速了酿酒酵母的分裂。[结论] 本研究首次探究了不同温度下酿酒酵母有丝分裂中Cdc5蛋白的精细分子动力学及对应的酵母的宏观生长情况,结果表明温度会对Cdc5蛋白的动力学产生影响,且其精细分子动力学与酿酒酵母的分裂速度成正相关,该结果为进一步研究其在细胞有丝分裂中的功能提供了前期研究基础。

    Abstract:

    [Objective] To explore the molecular dynamics changes of cell division cyclin protein Cdc5 in budding yeast during mitosis at different temperatures.[Methods] In this study, Saccharomyces cerevisiae was used as the experimental material objective to explore the molecular dynamic changes of Cdc5 protein in the mitosis process of budding yeast at different temperatures by using living cell imaging method; draw the growth curve by measuring OD595 to see whether the macro division is consistent with the micro dynamic changes of Cdc5 protein; use flow cytometry to detect the cell cycle changes.[Results] During cytokinesis, Cdc5 protein entered into daughter cells from mother cells and aggregated at bud neck. The aggregation time of Cdc5 protein at the bud neck was long at 25℃, and the aggregation time of Cdc5 protein at the bud neck was short at 37℃. There was a significant difference between them. However, there was no significant difference in the expression of Cdc5 protein between the two temperatures. At the same time, the temperature also affected the dynamics of Cdc5 protein during degradation process, including the occurence of frequency and time of the peak of fluorescence intensity of Cdc5 in mother cells and daughter cells. The growth curve results showed that the single cell division cycle of budding yeast affected its macroscopic cell growth, and the faster the division rate of budding yeast, the smaller the ratio of length to width of the daughter cell. The cell cycle results showed that the dynamic changes of Cdc5 protein at 37℃ were consistent with the cell cycle changes of budding yeast. The cell cycle results showed that the cell cycle of budding yeast changed from G0/G1 phase to S phase at 37℃, which also accelerated the division of budding yeast.[Conclusion]] This study was to explore the molecular dynamics of Cdc5 protein in the mitosis of budding yeast at different temperatures and the corresponding macro growth of budding yeast for the first time. The results showed that the temperature had an effect on the dynamics of Cdc5 protein, and its molecular dynamics was positively correlated with the division speed of budding yeast, which provided a basis for further study of its function in mitosis.

    参考文献
    [1] Ong JY, Torres JZ. Dissecting the mechanisms of cell division. The Journal of Biological Chemistry, 2019, 294(30):11382-11390.
    [2] Liu Q, Yu L. Yeast, a kind of model organism. Chemistry of Life, 2000, 20(2):61-65. (in Chinese) 刘擎, 余龙. 酵母:一种模式生物. 生命的化学, 2000, 20(2):61-65.
    [3] Yalcin SK, Ozbas ZY. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Brazilian Journal of Microbiology, 2008, 39(2):325-332.
    [4] Bembenek J, Kang J, Kurischko C, Li B, Raab JR, Belanger KD, Luca FC, Yu HT. Crm1-mediated nuclear export of Cdc14 is required for the completion of cytokinesis in budding yeast. Cell Cycle, 2005, 4(7):961-971.
    [5] Zhang J, Liu JL. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. Journal of Genetics and Genomics, 2019, 46(9):423-432.
    [6] Gu Y, Piao YZ, Du W, Wang XY, Wang CY. A protein differential analysis of cell wall in Saccharomyces cerevisiae under different temperatures. Biotechnology Bulletin, 2015, 31(12):200-206. (in Chinese) 谷月, 朴永哲, 杜维, 王小瑜, 王春艳. 不同温度培养下酿酒酵母细胞壁蛋白质差异分析. 生物技术通报, 2015, 31(12):200-206.
    [7] Ma Q, Fei HZ. Research progress of septin gene family classification and its physiological function. Education Teaching Forum, 2015(38):75-76. (in Chinese) 马强, 费慧芝. Septin基因家族分类及其生理功能的研究进展. 教育教学论坛, 2015(38):75-76.
    [8] Marquardt J, Yao LL, Okada H, Svitkina T, Bi EF. The LKB1-like kinase Elm1 controls septin hourglass assembly and stability by regulating filament pairing. Current Biology, 2020, 30(12):2386-2394.e4.
    [9] Mela A, Momany M. Septin mutations and phenotypes in S. cerevisiae. Cytoskeleton, 2019, 76(1):33-44.
    [10] Bhavsar-Jog YP, Bi EF. Mechanics and regulation of cytokinesis in budding yeast. Seminars in Cell & Developmental Biology, 2017, 66:107-118.
    [11] Zhao WY, Xu ZK, Miao Y. The relationship between PLK1 gene and pancreatic cancer. Chinese Journal of Pancreatology, 2006(4):246-248. (in Chinese) 赵闻雨, 徐泽宽, 苗毅. Plk1基因及其与胰腺癌的关系. 胰腺病学, 2006(4):246-248.
    [12] Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS. Coupling morphogenesis to mitotic entry. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(12):4124-4129.
    [13] Song S, Grenfell TZ, Garfield S, Erikson RL, Lee KS. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Molecular and Cellular Biology, 2000, 20(1):286-298.
    [14] Botchkarev VV, Rossio V, Yoshida S. The budding yeast Polo-like kinase Cdc5 is released from the nucleus during anaphase for timely mitotic exit. Cell Cycle:Georgetown, Tex, 2014, 13(20):3260-3270.
    [15] Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G. Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes & Development, 2011, 25(8):875-888.
    [16] Lepore D, Spassibojko O, Pinto G, Collins RN. Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. The Journal of Cell Biology, 2016, 214(6):691-703.
    [17] Oh Y, Schreiter JH, Okada H, Wloka C, Okada S, Yan D, Duan XD, Bi EF. Hof1 and Chs4 interact via F-BAR domain and Sel1-like repeats to control extracellular matrix deposition during cytokinesis. Current Biology, 2017, 27(18):2878-2886.e5.
    [18] Chen X, Wang KJ, Svitkina T, Bi EF. Critical roles of a RhoGEF-anillin module in septin architectural remodeling during cytokinesis. Current Biology, 2020, 30(8):1477-1490.e3.
    [19] Dai HM, Zheng J, Huang Y. Effect in cell cycle caused by overexpression of SpTrz2p in Schizosaccharomyces pombe. Journal of Anhui Agricultural Sciences, 2012, 40(22):11173-11174, 11178. (in Chinese) 戴鸿梅, 郑佳, 黄鹰. 高表达粟酒裂殖酵母SpTrz2p对细胞周期的影响. 安徽农业科学, 2012, 40(22):11173-11174, 11178.
    [20] Dominguez A, Varona RM, Villanueva JR, Sentandreu R. Mutants of Saccharomyces cerevisiae cell division cycle defective in cytokinesis. Biosynthesis of the cell wall and morphology. Antonie Van Leeuwenhoek, 1982, 48(2):145-157.
    [21] Mishra PK, Olafsson G, Boeckmann L, Westlake TJ, Jowhar ZM, Dittman LE, Baker RE, D'Amours D, Thorpe PH, Basrai MA. Cell cycle-dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast. Molecular Biology of the Cell, 2019, 30(8):1020-1036.
    [22] Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB, Ohya Y, Pellman D. Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science, 2006, 313(5783):108-111.
    [23] Park CJ, Park JE, Karpova TS, Soung NK, Yu LR, Song S, Lee KH, Xia X, Kang E, Dabanoglu I, Oh DY, Zhang JY, Kang YH, Wincovitch S, Huffaker TC, Veenstra TD, McNally JG, Lee KS. Requirement for the budding yeast polo kinase Cdc5 in proper microtubule growth and dynamics. Eukaryotic Cell, 2008, 7(3):444-453.
    [24] Li G, Moore JK. Microtubule dynamics at low temperature:evidence that tubulin recycling limits assembly. Molecular Biology of the Cell, 2020, 31(11):1154-1166.
    [25] Snead JL, Sullivan M, Lowery DM, Cohen MS, Zhang C, Randle DH, Taunton J, Yaffe MB, Morgan DO, Shokat KM. A coupled chemical-genetic and bioinformatic approach to polo-like kinase pathway exploration. Chemistry & Biology, 2007, 14(11):1261-1272.
    [26] Zakhartsev M, Reuss M. Cell size and morphological properties of yeast Saccharomyces cerevisiae in relation to growth temperature. FEMS Yeast Research, 2018, 18(6):foy052.
    [27] Matos-Perdomo E, Machín F. The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner. Cell Cycle, 2018, 17(2):200-215.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李慧,杨彤,陈茜,白鑫,丁祥. 不同温度下酿酒酵母细胞分裂周期蛋白Cdc5在有丝分裂中的分子动力学研究[J]. 微生物学报, 2021, 61(10): 3291-3304

复制
分享
文章指标
  • 点击次数:368
  • 下载次数: 1057
  • HTML阅读次数: 1399
  • 引用次数: 0
历史
  • 收稿日期:2021-01-16
  • 最后修改日期:2021-05-09
  • 在线发布日期: 2021-09-29
文章二维码