丛枝菌根真菌数个种的基因组和转录组研究概况
作者:
基金项目:

国家自然科学基金(31772397,31400365);广州市珠江科技新星(201806010186);"扬帆计划"引进创新创业团队专项(2015YT02H032)


Genomic and transcriptomic studies of several species of arbuscular mycorrhizal fungi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [89]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    丛枝菌根真菌(AMF)在自然界分布广泛,能与大部分维管植物的根系形成菌根共生体。它们在调节植物群落结构和全球的碳、氮、磷循环等方面发挥着重要的生态功能,也是农林、环境领域最具应用前景的微生物类群。受限于培养方法、研究手段等,长期以来对AMF基因组、转录组特征的认识非常有限。最近10年,AMF基因组和转录组的相关研究在高通量测序技术的推动下取得了较快发展;研究结果也显著提高了对AMF遗传发育、代谢生理、共生机制等的认识。本文综述了目前已完成测序的AMF种类的基因组、转录组信息。结果发现,已测序的AMF种类普遍具有基因组大、转座子丰富、AT碱基含量高、含大量未知功能基因与特异性基因、缺少部分共生相关基因等特点。在转录层面,总结了不同AMF种类、AMF不同共生结构、共生阶段以及与不同寄主植物共生时的转录本特征。结果发现,不同种类AMF的转录本大小差异明显。不同共生阶段或不同共生结构中的AMF转录本也具有较大的差异,且差异表达的基因大部分与养分交易、信号转导等密切相关。相比之下,同种AMF与不同寄主植物共生时的转录本表现出较高的保守性。最后,本文提出了本领域需要重点关注的研究方向,包括AMF纯培养技术的革新、AMF基因功能的解析、非模式AMF类群的研究以及对AMF蛋白组的研究。

    Abstract:

    Arbuscular mycorrhizal fungi (AMF) are widely distributed in nature and can form mycorrhizal symbiosis with the roots of most vascular plants. They play important ecological roles in the regulation of plant community, and are deeply involved in the global carbon, nitrogen, and phosphorus cycling. They are also the most promising microbial groups in the fields of agriculture, forestry and environment. However, so far the information of their genomic and transcriptomic characters was limited, partially due to the technique limitations in their cultivation. In the past decade, researches on AMF genome and transcriptome have achieved a rapid development under the impetus of high-throughput sequencing. These studies have greatly improved our understanding of AMF in heredity, development, metabolic physiology and symbiosis mechanisms. Here we reviewed the research progresses in the available genomic and transcriptomic information of AMF based on published literature. We found that genomes of available AMF species commonly have large sizes, high transposon abundances, high GC contents, rich in functionally-unknown and species-specific genes, and are lack of some symbiosis-related genes. We also summarized the transcriptomic characteristics of AMF in different symbiotic structures, at different symbiosis stages and with different host plants. The results showed that the transcriptomic sizes generally varied among different AMF species. Also, in different symbiotic structures or at different symbiotic stages, diverse transcriptomic characteristics were found, especially for the expression profiles of genes related to nutrient exchange and signal transduction. In contrast, the transcripts of the same AMF in symbiosis with different host plants were relatively conserved. Finally, we proposed the research directions that need to be focused on in this field, including the innovation of AMF asymbiotic culture technology, the analysis of AMF gene functions, the study of non-model AMF groups and the study of AMF proteome.

    参考文献
    [1] Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 2018, 220(4):1108-1115.
    [2] Wang YT, Li YW, Li SS, Rosendahl S. Ignored diversity of arbuscular mycorrhizal fungi in co-occurring mycotrophic and non-mycotrophic plants. Mycorrhiza, 2021, 31(1):93-102.
    [3] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367(6480):eaba1223.
    [4] Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16(5):299-363.
    [5] Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, de Pamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian ZJ, Yan ZX, Wu XL, Sun X, Wong GKS, Leebens-Mack J. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences, 2014, 111(45):E4859-E4868.
    [6] Compant S, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 2010, 73(2):197-214.
    [7] Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 2013, 197(2):617-630.
    [8] Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science, 2016, 21(11):937-950.
    [9] Hu RY, Beguiristain T, Junet A, Leyval C. No significant transfer of the rare earth element samarium from spiked soil to alfalfa by Funneliformis mosseae. Mycorrhiza, 2020, 30(6):761-771.
    [10] Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytologist, 2017, 214(4):1631-1645.
    [11] Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343):1172-1175.
    [12] Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356(6343):1175-1178.
    [13] Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion in Plant Biology, 2018, 44:137-144.
    [14] Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. Networks of power and influence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 2004, 82(8):1016-1045.
    [15] van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution:the past, the present, and the future. New Phytologist, 2015, 205(4):1406-1423.
    [16] Kobae Y, Ohtomo R. An improved method for bright-field imaging of arbuscular mycorrhizal fungi in plant roots. Soil Science and Plant Nutrition, 2016, 62(1):27-30.
    [17] Liu F, Xu YJ, Han GM, Wang W, Li XY, Cheng BJ. Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant and Cell Physiology, 2018, 59(8):1683-1694.
    [18] Pel R, Dupin S, Schat H, Ellers J, Kiers ET, van Straalen NM. Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. European Journal of Soil Biology, 2018, 88:89-96.
    [19] Pauline CN, Ewen FK. Whole genome sequencing. Genetic Variation, 2010, 628(1):215-226.
    [20] Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. Insights from 20 years of bacterial genome sequencing. Functional & Integrative Genomics, 2015, 15(2):141-161.
    [21] Chen LX, Méndez-García C, Dombrowski N, Servín-Garcidueñas LE, Eloe-Fadrosh EA, Fang BZ, Luo ZH, Tan S, Zhi XY, Hua ZS, Martinez-Romero E, Woyke T, Huang LN, Sánchez J, Peláez AI, Ferrer M, Baker BJ, Shu WS. Metabolic versatility of small Archaea Micrarchaeota and Parvarchaeota. The ISME Journal, 2018, 12(3):756-775.
    [22] Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, Li JT, Huang LN, Li WJ, Jiang HC, Dong HL, Shu WS. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. The ISME Journal, 2019, 13(8):2044-2057.
    [23] Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP, Song LR, Shu WS. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. The ISME Journal, 2021, 15(1):211-227.
    [24] Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei Dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, Van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of United States of America, 2013, 111(50):20117-20122.
    [25] Jiang ZH, Zhou X, Li R, Michal JJ, Zhang SW, Dodson MV, Zhang ZW, Harland RM. Whole transcriptome analysis with sequencing:methods, challenges and potential solutions. Cellular and Molecular Life Sciences, 2015, 72(18):3425-3439.
    [26] 唐年武. 基于RNA-seq的丛枝菌根真菌Gigaspora rosea基因构成及其共生发育相关基因的分析. 华中农业大学博士学位论文, 2016.
    [27] Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C. The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytologist, 2018, 220(4):1185-1199.
    [28] Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47(4):410-415.
    [29] Ropars J, Toro KS, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Fuchs J, Brachmann A, Corradi N. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology, 2016, 1:16033.
    [30] Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytologist, 2018, 220(4):1161-1171.
    [31] Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, De La Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E, Kuo A, Tang N, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222(3):1584-1598.
    [32] Sugiura Y, Akiyama R, Tanaka S, Yano K, Kameoka H, Marui S, Saito M, Kawaguchi M, Akiyama K, Saito K. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41):25779-25788.
    [33] Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y, Ezawa T, Hayashi H, Kawaguchi M, Akiyama K. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nature Microbiology, 2019, 4(10):1654-1660.
    [34] Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Shigenobu S, Kawaguchi M. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19(1):1-11.
    [35] Lanfranco L, Young JPW. Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 2012, 15(4):454-461.
    [36] Kokkoris V, Chagnon PL, Yildirir G, Clarke K, Goh D, MacLean AM, Dettman J, Stefani F, Corradi N. Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi. Current Biology, 2021, 31(7):1531-1538.e6.
    [37] Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW. The long hard road to a completed Glomus intraradices genome. New Phytologist, 2008, 180(4):747-750.
    [38] Barman J, Samanta A, Saha B, Datta S. Mycorrhiza. Resonance, 2016, 21(12):1093-1104.
    [39] Parniske M. Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nature Reviews Microbiology, 2008, 6(10):763-775.
    [40] Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 2013, 23(7):515-531.
    [41] Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. A Phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108(5):1028-1046.
    [42] Bonfante P, Venice F. Mucoromycota:going to the roots of plant-interacting fungi. Fungal Biology Reviews, 2020, 34(2):100-113.
    [43] Bruns TD, Corradi N, Redecker D, Taylor JW, Öpik M. Glomeromycotina:what is a species and why should we care? New Phytologist, 2018, 220(4):963-967.
    [44] Sanders IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species. New Phytologist, 2018, 220(4):968-970.
    [45] Gosling P, Proctor M, Jones J, Bending GD. Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza, 2014, 24(1):1-11.
    [46] Bills RJ, Morton JB. A combination of morphology and 28S rRNA gene sequences provide grouping and ranking criteria to merge eight into three Ambispora species (Ambisporaceae, Glomeromycota). Mycorrhiza, 2015, 25(6):485-498.
    [47] Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, Morin E, Andreopoulos B, Barry KW, Bonito G, Buée M, Carver A, Chen C, Cichocki N, Clum A, Culley D, Crous PW, Fauchery L, Girlanda M, Hayes RD, Kéri Z, LaButti K, Lipzen A, Lombard V, Magnuson J, Maillard F, Murat C, Nolan M, Ohm RA, Pangilinan J, de Freitas Pereira M, Perotto S, Peter M, Pfister S, Riley R, Sitrit Y, Benjamin Stielow J, Szöllősi G, Žifčáková L, Štursová M, Spatafora JW, Tedersoo L, Vaario LM, Yamada A, Yan M, Wang PF, Xu JP, Bruns T, Baldrian P, Vilgalys R, Dunand C, Henrissat B, Grigoriev IV, Hibbett D, Nagy LG, Martin FM. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11:5125.
    [48] Holland PWH, Marlétaz F, Maeso I, Dunwell TL, Paps J. New genes from old:asymmetric divergence of gene duplicates and the evolution of development. Philosophical Transactions of the Royal Society B:Biological Sciences, 2017, 372(1713):20150480.
    [49] Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. The ISME Journal, 2014, 8(2):284-294.
    [50] Sędzielewska KA, Fuchs J, Temsch EM, Baronian K, Watzke R, Kunze G. Estimation of the Glomus intraradices nuclear DNA content. New Phytologist, 2011, 192(4):794-797.
    [51] Chen EC, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. Elife, 2018, 7(1):e39813-e39830.
    [52] Tang NW, San Clemente H, Roy S, Bécard G, Zhao B, Roux C. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy. Frontiers in Microbiology, 2016, 7:233.
    [53] Malbreil M, Tisserant E, Martin F, Roux C. Genomics of arbuscular mycorrhizal fungi. Advances in Botanical Research. Amsterdam:Elsevier, 2014:259-290.
    [54] Feschotte C, Jiang N, Wessler SR. Plant transposable elements:where genetics meets genomics. Nature Reviews Genetics, 2002, 3(5):329-341.
    [55] Murphy TR, Xiao R, Hamilton-Brehm SD. Hybrid genome de novo assembly with methylome analysis of the anaerobic thermophilic subsurface bacterium Thermanaerosceptrum fracticalcis strain DRI-13^T. BMC Genomics, 2021, 22(1):1-16.
    [56] Malinovsky FG, Fangel JU, Willats WGT. The role of the cell wall in plant immunity. Frontiers in Plant Science, 2014, 5:178.
    [57] Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D. VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytologist, 2021, 229(6):3481-3496.
    [58] Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiology, 2003, 131(3):1496-1507.
    [59] Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Molecular Microbiology, 2007, 66(2):525-533.
    [60] Wewer V, Brands M, Dörmann P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. The Plant Journal, 2014, 79(3):398-412.
    [61] Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA. Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Applied and Environmental Microbiology, 2005, 71(9):5341-5347.
    [62] Vangelisti A, Turrini A, Sbrana C, Avio L, Giordani T, Natali L, Giovannetti M, Cavallini A. Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis. Mycorrhiza, 2020, 30(2/3):373-387.
    [63] Halary S, Malik SB, Lildhar L, Slamovits CH, Hijri M, Corradi N. Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biology and Evolution, 2011, 3:950-958.
    [64] Riley R, Corradi N. Searching for clues of sexual reproduction in the genomes of arbuscular mycorrhizal fungi. Fungal Ecology, 2013, 6(1):44-49.
    [65] Riley R, Charron P, Idnurm A, Farinelli L, Dalpé Y, Martin F, Corradi N. Extreme diversification of the mating type-high-mobility group (MATA-HMG) gene family in a plant-associated arbuscular mycorrhizal fungus. New Phytologist, 2014, 201(1):254-268.
    [66] Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193(3):755-769.
    [67] Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP. Revisiting the ‘direct mineral cycling’ hypothesis:arbuscular mycorrhizal fungi colonize leaf litter, but why? The ISME Journal, 2019, 13(8):1891-1898.
    [68] Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. The Plant Cell, 2011, 23(10):3812-3823.
    [69] Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal, 2018, 12(10):2339-2351.
    [70] Wang XX, Hoffland E, Feng G, Kuyper TW. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in Plant Science, 2017, 8:684.
    [71] Sun XP, Chen WB, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge J, Harrison MJ, Fei ZJ. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytologist, 2019, 221(3):1556-1573.
    [72] Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xie XN, Sędzielewska Toro K, Morin E, Lipzen A, Grigoriev IV, Henrissat B, Martin FM, Bonfante P. At the Nexus of three kingdoms:the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22(1):122-141.
    [73] Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, LaButti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environmental Microbiology, 2017, 19(8):2964-2983.
    [74] Wang L, Chen W, Feng Y, Ren Y, Gu ZN, Chen HQ, Wang HC, Thomas MJ, Zhang BX, Berquin IM, Li Y, Wu JS, Zhang HX, Song YD, Liu X, Norris JS, Wang S, Du P, Shen JG, Wang N, Yang YL, Wang W, Feng L, Ratledge C, Zhang H, Chen YQ. Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE, 2011, 6(12):e28319.
    [75] Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D, Benito EP, Benoit I, Burger G, Camino LP, Cánovas D, Cerdá-Olmedo E, Cheng JF, Domínguez A, Eliáš M, Eslava AP, Glaser F, Gutiérrez G, Heitman J, Henrissat B, Iturriaga EA, Lang BF, Lavín JL, Lee SC, Li WJ, Lindquist E, López-García S, Luque EM, Marcos AT, Martin J, McCluskey K, Medina HR, Miralles-Durán A, Miyazaki A, Muñoz-Torres E, Oguiza JA, Ohm RA, Olmedo M, Orejas M, Ortiz-Castellanos L, Pisabarro AG, Rodríguez-Romero J, Ruiz-Herrera J, Ruiz-Vázquez R, Sanz C, Schackwitz W, Shahriari M, Shelest E, Silva-Franco F, Soanes D, Syed K, Tagua VG, Talbot NJ, Thon MR, Tice H, de Vries RP, Wiebenga A, Yadav JS, Braun EL, Baker SE, Garre V, Schmutz J, Horwitz BA, Torres-Martínez S, Idnurm A, Herrera-Estrella A, Gabaldón T, Grigoriev IV. Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biology, 2016, 26(12):1577-1584.
    [76] Tsuzuki S, Handa Y, Takeda N, Kawaguchi M. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Molecular Plant-Microbe Interactions®, 2016, 29(4):277-286.
    [77] Ruzicka D, Chamala S, Barrios-Masias FH, Martin F, Smith S, Jackson LE, Barbazuk WB, Schachtman DP. Inside arbuscular mycorrhizal roots-molecular probes to understand the symbiosis. The Plant Genome, 2013, 6(2):DOI:plantgenome2012.06.0007.
    [78] Kameoka H, Maeda T, Okuma N, Kawaguchi M. Structure-specific regulation of nutrient transport and metabolism in arbuscular mycorrhizal fungi. Plant and Cell Physiology, 2019, 60(10):2272-2281.
    [79] Garcia K, Delaux PM, Cope KR, Ané JM. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytologist, 2015, 208(1):79-87.
    [80] Zeng T, Holmer R, Hontelez J, te Lintel-Hekkert B, Marufu L, de Zeeuw T, Wu FY, Schijlen E, Bisseling T, Limpens E. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The Plant Journal, 2018, 94(3):411-425.
    [81] Schweiger R, Baier MC, Müller C. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake. Molecular Plant-Microbe Interactions, 2014, 27(12):1403-1412.
    [82] Bago B, Azcón-Aguilar C, Piché Y. Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia, 1998, 90(1):52-62.
    [83] Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis:gene characterization and the coordination of expression with nitrogen flux. Plant Physiology, 2010, 153(3):1175-1187.
    [84] Bao XZ, Wang YT, Olsson PA. Arbuscular mycorrhiza under water-Carbon-phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biology and Biochemistry, 2019, 129:169-177.
    [85] Calabrese S, Cusant L, Sarazin A, Niehl A, Erban A, Brulé D, Recorbet G, Wipf D, Roux C, Kopka J, Boller T, Courty PE. Imbalanced regulation of fungal nutrient transports according to phosphate availability in a symbiocosm formed by poplar, Sorghum, and Rhizophagus irregularis. Frontiers in Plant Science, 2019, 10:1617.
    [86] Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S, Dalpé Y, Séguin S, Farinelli L, Stajich JE, Corradi N. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Research, 2018, 25(2):217-227.
    [87] Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. The ISME Journal, 2016, 10(1):130-144.
    [88] Kuang JL, Huang LN, He ZL, Chen LX, Hua ZS, Jia P, Li SJ, Liu J, Li JT, Zhou JZ, Shu WS. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. The ISME Journal, 2016, 10(6):1527-1539.
    [89] Recorbet G, Courty PE, Wipf D. Recovery of extra-radical fungal peptides amenable for shotgun protein profiling in arbuscular mycorrhizae. Methods in Molecular Biology:Clifton, N J, 2020, 2146:223-238.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

熊天,梁洁良,李金天,束文圣,王宇涛. 丛枝菌根真菌数个种的基因组和转录组研究概况[J]. 微生物学报, 2021, 61(11): 3413-3430

复制
分享
文章指标
  • 点击次数:517
  • 下载次数: 1815
  • HTML阅读次数: 2245
  • 引用次数: 0
历史
  • 收稿日期:2021-02-09
  • 最后修改日期:2021-04-16
  • 在线发布日期: 2021-11-04
文章二维码