嵌合鞭毛蛋白和壳聚糖/三聚磷酸(CS/TPP)纳米凝胶封装对鼻接种幽门螺杆菌黏附素诱导的免疫应答的佐剂作用
作者:

Adjuvant effects of chimeric flagellin and chitosan/tripolyphosphate (CS/TPP) nanogel encapsulation on immune response induced by nasal vaccination of Helicobacter pylori adhesin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 幽门螺杆菌黏附素A(HpaA)是幽门螺杆菌疫苗的一种有希望的抗原。探索嵌合鞭毛蛋白(cFLN)和壳聚糖/三聚磷酸(CS/TPP)纳米凝胶包封对鼻递送抗原HpaA诱导的免疫应答增强的佐剂作用。[方法] 通过将鼠伤寒沙门氏菌鞭毛蛋白FliC的D0、D1结构域与幽门螺杆菌鞭毛FlaA的D2、D3结构域相结合,构建嵌合鞭毛蛋白cFLN。作为分子内佐剂,嵌合鞭毛蛋白cFLN与黏附素(HpaA)连接构建复合抗原cFLN-HpaA。cFLN、HpaA、cFLN-HpaA在重组大肠杆菌中表达,并通过Ni-NTA预装色谱柱进行纯化。使用离子凝胶法分别将cFLN、HpaA、cFLN-HpaA包封到壳聚糖/三聚磷酸(CS/TPP)纳米凝胶中。[结果] 成功表达和纯化了cFLN、HpaA和cFLN-HpaA,并用离子凝胶法将这3种抗原包封在CS/TPP/纳米凝胶中,制备了包封cFLN的CS/TPP纳米凝胶(cFLN-HpaA NG)、包封HpaA的CS/TPP纳米凝胶(HpaA NG)、包封cFLN-HpaA的CS/TPP/纳米凝胶(cFLN-HpaA NG)。经鼻免疫小鼠后,与HpaA相比,cFLN-HpaA分别导致血清中IgG、IgG1和IgA含量增加2.09倍、1.4倍和2.62倍。与cFLN、HpaA和cFLN-HpaA相比,cFLN NG、HpaA NG和cFLN-HpaA NG分别使血清中IgA、IgG、IgG1和IgG2a的含量增加了1.28至1.71倍。[结论] cFLN和CS/TPP NG可以显著增强鼻腔输送的HpaA诱导的体液免疫。通过检测鼻腔免疫后胃黏膜中IFN-γ、IL-4、IL-17和SIgA的含量,与HpaA相比,cFLN-HpaA分别诱导IFN-γ、IL-4和SIgA的含量增加1.38、1.16和1.58倍。与cFLN-HpaA相比,cFLN-HpaA NG分别使小鼠胃黏膜中IFN-γ、IL-4、IL-17和SIgA的含量增加1.81、1.71、2.16和2.1倍。表明cFLN和CS/TPP NG可以显著增强Th1和Th17型免疫应答。小鼠体内免疫原性研究表明,分子内佐剂cFLN和纳米凝胶包封不仅可以有效增强鼻腔输送HpaA诱导的体液免疫应答,而且还可以增强小鼠胃黏膜中的黏膜免疫应答——Th1和Th17型免疫应答。因此,这些结果表明,cFLN-HpaA NG可能是有希望的经鼻输送的用于预防幽门螺杆菌感染的疫苗系统。

    Abstract:

    [Objective] H. pylori adhesin A (HpaA) is a promising antigen for Helicobacter pylori vaccine. Adjuvant effects of chimeric flagellin cFLN and chitosan/tripolyphosphate (CS/TPP) nanogel encapsulation on humoral and gastric mucosal immune response induced by nasal vaccination of HpaA was investigated. [Methods] Chimeric flagellin cFLN was constructed by combining D0 and D1 domains of Salmonella typhimurium flagellin FliC with D2 and D3 domains of Helicobacter pylori flagellin FlaA. Chimeric flagellin cFLN was then linked with adhesin (HpaA) to construct a complex antigen cFLN-HpaA. cFLN, HpaA and cFLN-HpaA was expressed in recombinant E. coli and further purified by Ni-NTA Prepacked chromatographic column. cFLN, HpaA and cFLN-HpaA were further encapsulated into chitosan/tripolyphosphate (CS/TPP) nanogels to prepare cFLN-loaded CS/TPP nanogels (cFLN NG), HpaA-loaded CS/TPP nanogels (HpaA NG), and cFLN-HpaA-loaded CS/TPP/nanogels (cFLN-HpaA NG) by an ionic gelation method. In vivo immunogenicity studies were performed with mice. [Results] cFLN, HpaA and cFLN-HpaA was successfully prepared and encapsulated within CS/TPP/nanogels. After immunizing mice through the nose, compared with HpaA, cFLN-HpaA caused a 2.09, 1.4 and 2.62-fold increase in serum IgG, IgG1 and IgA levels, respectively. Compared with cFLN, HpaA and cFLN-HpaA, cFLN NG, HpaA NG and cFLN-HpaA NG increased the serum levels of IgA, IgG, IgG1 and IgG2a by 1.28 to 1.71 times. [Conclusion] cFLN and CS/TPP NG can significantly enhance the humoral immunity induced by HpaA delivered in the nasal cavity. The contents of IFN-γ, IL-4, IL-17 and SIgA in gastric mucosa after nasal immunization were detected. Compared with HpaA, cFLN-HpaA induced a 1.38, 1.16 and 1.58-fold increase in the content of IFN-γ, IL-4 and SIgA, respectively. Compared with cFLN-HpaA, cFLN-HpaA NG increased the contents of IFN-γ, IL-4, IL-17 and SIgA in mouse gastric mucosa by 1.81, 1.71, 2.16 and 2.10 times, respectively. It shows that cFLN and CS/TPP NG can significantly enhance Th1 and Th17 immune responses. In vivo immunogenicity studies in mouse indicated that cFLN and nanogel encapsulation could effectively not only enhance hurmoral immune responses, but also gastric mucosal immune response, Th1 and Th17 type immune response in gastric mucosa induced by nasally delivered HpaA. Therefore, these results suggested that cFLN-HpaA NG might be a promising nasally delivered vaccine system for protection against Helicobacter pylori infection.

    参考文献
    [1] Salama NR, Hartung ML, Müller A. Life in the human stomach:persistence strategies of the bacterial pathogen Helicobacter pylori. Nature Reviews Microbiology, 2013, 11(6):385-399.
    [2] Flores-Treviño S, Mendoza-Olazarán S, Bocanegra-Ibarias P, Maldonado-Garza HJ, Garza-González E. Helicobacter pylori drug resistance:therapy changes and challenges. Expert Review of Gastroenterology & Hepatology, 2018, 12(8):819-827.
    [3] Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Suerbaum S, Sugano K, El-Omar EM, European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the maastricht V/Florence consensus report. Gut, 2017, 66(1):6-30.
    [4] Walduck A, Andersen LP, Raghavan S. Inflammation, immunity, and vaccines for Helicobacter pylori infection. Helicobacter, 2015, 20:17-25.
    [5] Carlsohn E, Nyström J, Bölin I, Nilsson CL, Svennerholm AM. HpaA is essential for Helicobacter pylori colonization in mice. Infection and Immunity, 2006, 74(2):920-926.
    [6] Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS, Chakraborty C. A novel multi-epitopic peptide vaccine candidate against Helicobacter pylori:in-silico identification, design, cloning and validation through molecular dynamics. International Journal of Peptide Research and Therapeutics, 2021, 27(2):1149-1166.
    [7] Nyström J, Svennerholm AM. Oral immunization with HpaA affords therapeutic protective immunity against H. pylori that is reflected by specific mucosal immune responses. Vaccine, 2007, 25(14):2591-2598.
    [8] Flach CF, Svensson N, Blomquist M, Ekman A, Raghavan S, Holmgren J. A truncated form of HpaA is a promising antigen for use in a vaccine against Helicobacter pylori. Vaccine, 2011, 29(6):1235-1241.
    [9] Boyaka PN. Inducing mucosal IgA:a challenge for vaccine adjuvants and delivery systems. Journal of Immunology, 2017, 199(1):9-16.
    [10] Lycke N. Recent progress in mucosal vaccine development:potential and limitations. Nature Reviews Immunology, 2012, 12(8):592-605.
    [11] Dai XJ, He JT, Zhang RX, Wu GH, Xiong FF, Zhao BH. Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic-co-glycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen. International Journal of Nanomedicine, 2017, 12:6617-6632.
    [12] Moyle PM. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnology Advances, 2017, 35(3):375-389.
    [13] Mizel SB, Bates JT. Flagellin as an adjuvant:cellular mechanisms and potential. Journal of Immunology, 2010, 185(10):5677-5682.
    [14] Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH. Bacterial flagellin-a potent immunomodulatory agent. Experimental & Molecular Medicine, 2017, 49(9):e373.
    [15] Mori J, Vranac T, Smrekar B, Černilec M, Šerbec VČ, Horvat S, Ihan A, Benčina M, Jerala R. Chimeric flagellin as the self-adjuvanting antigen for the activation of immune response against Helicobacter pylori. Vaccine, 2012, 30(40):5856-5863.
    [16] González MJ, Iribarnegaray V, Zunino P, Scavone P. Purification of native flagellin. Methods in Molecular Biology:Clifton, N J, 2019, 2021:35-44.
    [17] Jonassen H, Kjøniksen AL, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules, 2012, 13(11):3747-3756.
    [18] Flach CF, Svensson N, Blomquist M, Ekman A, Raghavan S, Holmgren J. A truncated form of HpaA is a promising antigen for use in a vaccine against Helicobacter pylori. Vaccine, 2011, 29(6):1235-1241.
    [19] He JT, Wang GZ, Xu RG, Feng JL, Wang JL, Su HB, Song HY. Refolding of a staphylokinase variant Y1-sak by reverse dilution. Applied Biochemistry and Biotechnology, 2008, 151(1):29-41.
    [20] Yamaguchi H, Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules, 2014, 4(1):235-251.
    [21] Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T. Role of arginine in protein refolding, solubilization, and purification. Biotechnology Progress, 2004, 20(5):1301-1308.
    [22] Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Rassoulian Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunology, 2003, 4(12):1247-1253.
    [23] Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 2005, 298(2):315-322.
    [24] Bennett KM, Gorham RD, Gusti V, Trinh L, Morikis D, Lo DD. Hybrid flagellin as a T cell independent vaccine scaffold. BMC Biotechnology, 2015, 15:71.
    [25] Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskoot W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination:biological properties and immunogenicity in a mouse model. Vaccine, 2007, 25(1):144-153.
    [26] Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á, Alonso MJ. Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28(14):2607-2614.
    [27] Lycke N. Recent progress in mucosal vaccine development:potential and limitations. Nature Reviews Immunology, 2012, 12(8):592-605.
    [28] Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, Angenent LT, Bell ME, Hay AG, Peterson DA, Walter J, Vijay-Kumar M, Gewirtz AT, Ley RE. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host & Microbe, 2013, 14(5):571-581.
    引证文献
引用本文

翟新,颜鑫,孟庆文,李文婷,贺进田,王改珍. 嵌合鞭毛蛋白和壳聚糖/三聚磷酸(CS/TPP)纳米凝胶封装对鼻接种幽门螺杆菌黏附素诱导的免疫应答的佐剂作用[J]. 微生物学报, 2021, 61(11): 3569-3582

复制
分享
文章指标
  • 点击次数:382
  • 下载次数: 1112
  • HTML阅读次数: 942
  • 引用次数: 0
历史
  • 收稿日期:2021-02-03
  • 最后修改日期:2021-04-13
  • 在线发布日期: 2021-11-04
文章二维码