阿卡波糖生物合成调控蛋白的钓取与功能解析
作者:
基金项目:

国家自然科学基金(31830104)


Mining and function studies of regulators for acarbose biosynthesis in Actinoplanes sp. SE50/110
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 发现游动放线菌Actinoplanes sp.SE50/110中阿卡波糖生物合成的调控因子,并提高其产量。[方法] 首先,利用DNA亲和层析技术,钓取与阿卡波糖生物合成基因簇2个双向启动子区域结合的调控蛋白。然后,在阿卡波糖产生菌QQ-2中强化表达或敲除这些调控蛋白编码基因,进行体内功能验证。同时,利用大肠杆菌BL21(DE3)异源表达获得可溶性蛋白,通过凝胶阻滞实验验证蛋白与启动子区域的结合能力。[结果] 经DNA亲和层析及蛋白质质谱分析,钓取出9个与双向启动子PWVPAB结合的调控蛋白。在QQ-2中分别强化表达和缺失这9个调控基因后发现,基因ACPL_1889的强化表达使阿卡波糖产量提高25%,而该基因的缺失使产量降低22%;基因ACPL_5445、ACPL_3989的强化表达使阿卡波糖产量分别降低12%和39%,而这两个基因的缺失使产量分别提高15%和8%。对阿卡波糖生物合成基因转录水平的检测发现,强化表达基因ACPL_1889使acbA、acbB、acbW、acbV的转录水平升高,而缺失该基因使这4个基因的转录水平降低;敲除基因ACPL_5445使这4个基因转录水平均有提高;强化表达基因ACPL_3989使这4个基因的转录水平均下降,而其敲除使acbWacbA的转录水平分别提高了约100倍和40倍。在凝胶阻滞实验中,ACPL_1889与ACPL_3989均能与acb基因簇的启动子区域结合。最后将正调控基因的强化表达和负调控基因的敲除进行组合,使阿卡波糖产量提升32%。[结论] 本研究发现了9个与阿卡波糖生物合成基因簇的启动子区域结合的调控蛋白,通过体内、体外实验证明ACPL_1889为阿卡波糖生物合成的正调控因子、ACPL_5445和ACPL_3989为负调控因子,不但为揭示阿卡波糖生物合成的转录调控机制奠定了基础,而且这些调控基因的改造显著提升了阿卡波糖的产量。

    Abstract:

    [Objective] Identification of regulatory factors for acarbose biosynthesis and harnessing them for the improvement of acarbose yield in Actinoplanes sp. SE50/110. [Methods] Firstly, regulatory proteins binding to the two bi-directional promoters of acarbose biosynthetic gene cluster were obtained using DNA affinity chromatography. Secondly, to validate functions, these coding genes of regulatory proteins were deleted or overexpressed in Actinoplanes sp. QQ-2. Next, soluble proteins were obtained by heterologous expression in E. coli BL21(DE3), and electrophoretic mobility shift assays were performed to verify the interaction between these regulatory proteins and promoter regions. [Results] By analyzing the results of affinity chromatography and mass spectra, we identified nine regulatory proteins (ACPL_1889, ACPL_4236, ACPL_7303, ACPL_6479, ACPL_8104, ACPL_8270, ACPL_5445, ACPL_3989, ACPL_7617). Furthermore, we studied the potential function of all the nine regulatory proteins by deleting or overexpressing their coding genes in the strain QQ-2. The overexpression of ACPL_1889 resulted in 25% yield increase, whereas its deletion led to 22% yield decrease of acarbose. Respective overexpression of ACPL_5445 and ACPL_3989 resulted in 12% and 39% yield decrease, whereas their deletions let to 15% and 8% yield increase, respectively. Meanwhile, transcription level of acarbose biosynthetic genes acbA, acbB, acbW and acbV increased when ACPL_1889 was overexpressed and decreased when it was deleted; the transcription of these four genes increased to a certain extent in ACPL_5445 mutant; whereas the transcription of these four genes decreased in the ACPL_3989-overexpressed mutant, the transcription of acbW and acbA increased by 100 times and 40 times in the ACPL_3989 deleted mutant, respectively. Moreover, we found both ACPL_1889 and ACPL_3989 were able to bind to promoters of the acb gene cluster in EMSA experiments. Eventually, we increased the yield of acarbose by 32% applying a combinatory strategy of overexpressing positive regulatory genes and deleting negative regulatory genes. [Conclusion] This study identified nine regulatory proteins binding to the two bi-directional promoters of acarbose biosynthetic gene cluster, among which ACPL_1889 is a positive regulatory factor, while ACPL_5445 and ACPL_3989 are negative regulatory factors. This work not only laid a foundation for studying the regulatory mechanism of acarbose biosynthesis, but also substantially improved acarbose yield by manipulating these regulatory genes.

    参考文献
    [1] Diabetes Society of Chinese Medical Association. Guidelines for the prevention and treatment of type 2 diabetes in China (2013 Edition). Chinese Journal of Diabetes Mellitus, 2014, 6(7):447-498. (in Chinese) 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版). 中国糖尿病杂志, 2014, 6(7):447-498.
    [2] Petersmann A, Nauck M, Müller-Wieland D, Kerner W, Müller UA, Landgraf R, Freckmann G, Heinemann L. Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 2018, 126(7):406-410.
    [3] Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. The New England Journal of Medicine, 2001, 345(11):790-797.
    [4] Liu YG, Tian H, Xie XX, Shen XY, Chen CQ. Research progress in non-insulin drugs used for treating type 2 diabetes. Drugs & Clinic, 2013, 28(2):108-113. (in Chinese) 刘永贵, 田红, 解学星, 沈雪砚, 陈常青. 治疗2型糖尿病的非胰岛素类药物的研究进展. 现代药物与临床, 2013, 28(2):108-113.
    [5] Feng ZH, Wang YS, Zheng YG. Progress in biosynthesis pathway of acarbose. Biotechnology Bulletin, 2011(8):60-67. (in Chinese) 冯志华, 王远山, 郑裕国. 阿卡波糖的生物合成途径研究进展. 生物技术通报, 2011(8):60-67.
    [6] He ST, Xu JY, Chen DJ. Antidiabetic drugs with α-glucosidase inhibition activities. Industrial Microbiology, 2003, 33(1):43-49. (in Chinese) 何素婷, 许激扬, 陈代杰. 具有α-葡糖苷酶抑制作用的抗糖尿病药物. 工业微生物, 2003, 33(1):43-49.
    [7] Wehmeier UF, Piepersberg W. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose. Applied Microbiology and Biotechnology, 2004, 63(6):613-625.
    [8] Zhang CS, Stratmann A, Block O, Brückner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W. Biosynthesis of the C7-cyclitol moiety of acarbose in Actinoplanes species SE50/110:7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. Journal of Biological Chemistry, 2002, 277(25):22853-22862.
    [9] Zhang Y, Zhou CL. Application of metabolic regulation in the antibiotic biosynthesis of actinomycetes. Journal of China Pharmaceutical University, 2015, 46(4):393-399. (in Chinese) 张亚, 周长林. 代谢调控技术在放线菌生物合成抗生素的应用进展. 中国药科大学学报, 2015, 46(4):393-399.
    [10] Gao C, Hindra, Mulder D, Yin C, Elliot MA. Crp is a global regulator of antibiotic production in streptomyces. mBio, 2012, 3(6):e00407-e00412.
    [11] Kang SH, Huang JQ, Lee HN, Hur YA, Cohen SN, Kim ES. Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. Journal of Bacteriology, 2007, 189(11):4315-4319.
    [12] Wang J, Zhao GP. GlnR positively regulates NasA transcription in Streptomyces coelicolor. Biochemical and Biophysical Research Communications, 2009, 386(1):77-81.
    [13] 曲爽. 井冈霉素生物合成的调控机制. 上海交通大学博士学位论文, 2015.
    [14] Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J. The Streptomyces coelicolor GlnR regulon:identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Molecular Microbiology, 2008, 67(4):861-880.
    [15] Zhang YY, Zou ZZ, Niu GQ, Tan HR. jadR* and jadR2 act synergistically to repress jadomycin biosynthesis. Science China Life Sciences, 2013, 56(7):584-590.
    [16] Schaffert L, Schneiker-Bekel S, Dymek S, Droste J, Persicke M, Busche T, Brandt D, Pühler A, Kalinowski J. Essentiality of the maltase AmlE in maltose utilization ??楤?????ぴ??????????は???????扵牬?孴??嵮?坢潹氠晴?呥???牰潲獥瑳敳?????牬敒渠?呮??佨牥琠獡散楡晲敢湯?噥??卲捯桤湵散楩歮敧爠??散歴敥汲?卵??娼敩派歁散?呩??偰??????栯汩放爠?????慅氵椰港漱眱猰欮椠????呲桯敮??慥汲剳?瑩祮瀠敍?牣敲杯畢汩慯瑬潯牧??振物??椠猲‰愱?琬爠愱渰猺挲爴椴瀸琮椼潢湲愾汛?爷敝瀠牚敨獵猠潙牐?漠晘?愠捗慈爬戠潚獨敡?执椠潊猬礠湚瑨桡敮瑧椠捐?本攠湚敨獡?椠湚??椠??捥瑮楧渠潄灈氬愠湍敡猠??椠??獡灮??卙??????????椠??????效渮漠流椠捨獩??楡????っ???????????????扯牵?嬠??嵧??橡楴瑯桲?嘠???健牳愠獣慯摮?割????湮潧瘠数汲?灤牵潣瑴敩楯湮?瑯桦愠瑴?扥椠湰摯獬?瑥潮??楡?摴湩牢乩??楩???楡?摤湩牣佩??楮??楮渠琼敩爾杓整湲楥捰?牯敭杹楣潥湳?漯晩 ̄?楳?匮琠牳整灲瑡潩浮礠捆敒猭‰瀰攸甮挠攼瑩椾畁獰??楩??瀠畡牮楤映楅敮摶?扲祯??乥??慡晬映楍湩楣瑲祯?捩慯灬瑯畧特攼?桩愾猬?搲椰栲礰搬爠漸氶椨瀹漩愺浥椰搰攰‵搵攼桴祥摳牨潵杺敩湦慵猾攭′愰挮琼楢癲椾瑛礱???楍?偯爠潘瑍攬椠湓??砠灎爬攠獚獨楥潮湧?慙測搠?偩甠牙楑昮椠捄慥瑶楥潬湯??楥????て???????㈠??ㄠ????????戠牴?孧??嵩??敳牴潲略慰畴硯?????愮氠椼捩椾?卣??乮潴瑩桦慩晣琠????乲整畳琼支汩椾測朠猲‰吱???漷用琱稩漺甶爸攵水椮猼?????甹獝愠牙瑵????呌楩瑵朠敓浐攬礠敂牵????删楚杨慯汵椠?単???敨汵攠瑚楈漬渠?潵晡?慧?捆祌挬氠楌捩???倮?牗敢捬敁灣瑨漬爠?瀠牰潩瑶敯楴湡?栠潡浣潴汩潶条畴敯?搠楯浦椠湮楡獴桡敭獹?杩敮爠浢楩湯慳瑹楮潴湨?慳湩摳?慡普晤攠捭瑯獲?浨潯牬灯桧潩汣潡杬椠捤慩汦?摥敲癥敮汴潩灡浴敩湯瑮?潩普??楩?卓瑴牲敥灰瑴潯浭祹捣敥獳?捣潨敡汴楴捡潮汯潯牧??楳????楩??潌由爰測愠汩?漠晰??慩捴瑩敶牥楬潹氠潲来祧??楡???㈠ぢべ?????????????????????扮牤?孅??嵩?副楮杭慥汮楴?卬??乩潣瑲桯慢晩瑯????丼漯敩渾猬??????匠挸栰氨椲挲栩琺?????漶永猸漷渮?卢? ̄???????污汯攠牑?????潥爠楈獘?????潧攠牙琬攠湗??????漬瀠睂潡潩搠?????呭楰瑲杯敶浩敮祧攠牡????癯慳湥?坰敲穯敤汵??偩??吠桡敮?猠略杬慩牭?灮桡潴獩灮桧漠瑴牨慥渠獢晹攭牰慲獯敤?獣祴猠瑣敯浭?潯普??楴?千琠牷敩灴瑨漠浡祮挠敥獦?捩潣敩汥楮捴漠汧潥牮??楩??業獡?物数杵畬污慴瑩敯摮?扳祹?瑴桥敭??湦琠刼?显慁浣楴汩祮?牰敬条畮汥慳琼漯物 ̄?慳獰刮?慓湅搵‰氯椱渱欰献?丼?愾捓敹瑮祴汨来汴畩捣漠獡慮浤椠湓敹?浴敥瑭慳戠潂汩楯獴浥?瑨潮?瑬桯敧?挼漯湩琾爬漠氲‰漱昷?搠攲瘨攴氩漺瀳洰攲渭琳???椼??漾汛攲挱畝氠慐牡??楴挠牍潓戬椠潃汨潡杭祢??楬?????????????????????㈠????扂牵?孴??嵲?卍桊攮渠??????潣湥朠??塡???楨?夠??婴桲敡湣杹?塯兰??坳慭湩杣?兦??奣慴湩杯?圠乳???敡渠杦?婣塴??夠漦産????????甾硅刼?晳慵浰椾氠祩?琠牲慥湱獵捩牲楥灤琠楦潯湲愠汮?牲敭条畬氠慣瑥潬牬??湡楬??灳牴潲浵潣瑴敵獲?琠桩敮?瀼物漾摓畴捲瑥楰潴湯?潹晣?慳渠楣獯潥浬祩捣楯湬?慲渼搯?椾琠獁″搨攲爩椮瘠愼瑩椾癊敯獵?楮湡??楯?匠瑂牡散灴瑥潲浩祯捬敯獧?格礯杩爾漬猠瀱椹渹漹猬甠猱??椨??瘺愲爰???椱?戮攼楢橲椾湛朲攲湝猠楗獡??椠????楌?匠祘測琠桗敡瑮楧挠?愬渠摘?卡祮獧琠敓浈猬??楥潮瑧攠捘桚測漠汙潡杮祧??楑?????????????????????执爠?孲?ね嵯??敲礠敦牯?丠???剥潰整灯獭瑹潣牥晴晥?倮???愾流浰数牬?????楮汤猠瑅牮當灩????健牮潴瑡敬漠浍敩?慲湯慢汩祯獬楯獧?漼是?琾栬攠′瀰由爳椬渠攷?猨琱椴洩町水漴游?昭爴漴洹′?椼??愾捛琲漳捝漠捂捩略獲?污慮挠瑍椬猠??楧????椬?偏刧佂呲?佥???匬??楥????ご??????????????????打牣?孯??嵲??慅爮琠楐湬畡獳獭敩湤????卮?潮獧氠慶獥档?牯敲湳猠敦湯?????攠湣摯牮敪獵敧湡??????楳汦獥瑲爠畯灦????吠睦潲?湭甠挼汩放潅獳楣摨敥?瑩牣慨湩獡瀠潣牯瑬敩爼猯?椾渠??椠??愾捓瑴潲捥潰捴捯畭獹?汥慳挼琯楩猾??楰??眮椠琼桩 ̄摇楥普晥攼爯敩渾琬?猱甹戹猲琬爠愱琱收?猱瀩攺挴椳昭椴挹椮琼楢敲猾?′?楝??楩捶牡潫戠楋潊氬漠杓祣?剭敩慴摴楧湥杮???渮朠汁慮湡摬??楩??????づ??????倠瑧??づ????????????data using real-time quantitative PCR and the 2-ΔΔCT method. Methods
    相似文献
    引证文献
引用本文

汪雪梅,翁倩卉,赵芹芹,白林泉. 阿卡波糖生物合成调控蛋白的钓取与功能解析[J]. 微生物学报, 2021, 61(11): 3667-3685

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-10
  • 最后修改日期:2021-03-03
  • 在线发布日期: 2021-11-04
文章二维码