钙调磷酸酶信号调控真菌生长代谢、毒力及抗逆性能
作者:
基金项目:

国家自然科学基金(31871783, 31571816)


Calcineurin signaling cascade regulates fungal growth, metabolism, virulence and stress resistance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    钙调磷酸酶是一种丝氨酸/苏氨酸(Ser/Thr)蛋白磷酸酶,在真菌中普遍保守,上游信号途径由Ca2+通道(Cch1)、转运蛋白(Mid1)、钙离子感应蛋白(CaM)、钙调蛋白依赖性磷酸酶等组成。钙调磷酸酶受钙离子和钙调蛋白调节,在调控真菌Ca2+稳态的钙信号级联途径中发挥着中心作用,通过钙信号级联途径参与生物学过程,调控真菌生长、发育和毒力形成来响应外界环境因素的变化,使真菌能够适应不同环境,维持正常的生命活动。本文综述了真菌钙调磷酸酶信号的组成和上下游信号转导途径、调控细胞生长代谢、毒力形成以及抗逆性能调控的研究进展;结合对真菌代谢产物合成的调控作用,对钙调磷酸酶信号作为重要合成生物学元件及调控开关进行了展望。

    Abstract:

    Calcineurin is a serine/threonine (Ser/Thr) protein phosphatase and generally conserved in fungal genus. Its upstream signaling pathway were composed of Ca2+ channel (CCH1), transporter (MID1), calcium ion sensing protein (CaM), calmodulin-dependent phosphatase and etc. Calcineurin is the only phosphatase in fungi that is regulated by calcium ions and calmodulin, and plays a central role in the calcium signal cascade that regulates fungal Ca2+ homeostasis. Through calcium signaling cascade pathway, it participates in biological processes that regulates the growth, development and virulence formation of fungi for response to changes in external environmental factors, as well as fungi can adapt to various environment and maintain normal life activities. This review summarizes the signal composition of fungal calcineurin and the upstream and downstream signal transduction pathways, as well as the regulation of cell growth and metabolism, the formation of virulence, and tolerance resistance. With the advantage of the regulation of fungal metabolite synthesis, the mining of calcium regulating phosphatase signal as a potential synthetic biological element and regulatory switch was also proposed.

    参考文献
    [1] Clapham DE. Calcium signaling. Cell, 2007, 131(6):1047-1058.
    [2] Carafoli E. Calcium signaling:a tale for all seasons. PNAS, 2002, 99(3):1115-1122.
    [3] Nowycky MC, Thomas AP. Intracellular calcium signaling. Journal of Cell Science, 2002, 115(19):3715-3716.
    [4] Stull JT. Ca2+-dependent cell signaling through calmodulin-activated protein phosphatase and protein kinases minireview series. The Journal of Biological Chemistry, 2001, 276(4):2311-2312.
    [5] Juvvadi PR, Lee SC, Heitman J, Steinbach WJ. Calcineurin in fungal virulence and drug resistance:Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence, 2017, 8(2):186-197.
    [6] Rusnak F, Mertz P. Calcineurin:form and function. Physiological Reviews, 2000, 80(4):1483-1521.
    [7] Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, Cardenas ME. Calcineurin targets involved in stress survival and fungal virulence. PLoS Pathogens, 2016, 12(9):e1005873.
    [8] Armstrong-James D, de Boer L, Bercusson A, Shah A. From phagocytosis to metaforosis:Calcineurin's deadly role in innate processing of fungi. PLoS Pathogens, 2018, 14(1):e1006627.
    [9] Goldman A, Roy J, Bodenmiller B, Wanka S, Landry CR, Aebersold R, Cyert MS. The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Molecular Cell, 2014, 55(3):422-435.
    [10] Aramburu JO, Rao A, B.Kill C. Calcineurin:from structure to function. Current Topics in Cellular Regulation, 2001, 36(1):237-295.
    [11] Park HS, Lee SC, Cardenas ME, Heitman J. Calcium-calmodulin-calcineurin signaling:a globally conserved virulence cascade in eukaryotic microbial pathogens. Cell Host Microbe, 2019, 26(4):453-462.
    [12] Alber J, Jiang LH, Geyer J. CaRch1p does not functionally interact with the high-affinity Ca2+ influx system (HACS) of Candida albicans. Yeast, 2013, 30(11):449-457.
    [13] Gao YY, Li W, Liu XB, Gao FS, Zhao XH. Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Molecular Medicine Reports, 2015, 11(3):2118-2124.
    [14] Thewes S. Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryotic Cell, 2014, 13(6):694-705.
    [15] Chow EWL, Clancey SA, Billmyre RB, Averette AF, Granek JA, Mieczkowski P, Cardenas ME, Heitman J. Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen Cryptococcus neoformans. PLoS Genetics, 2017, 13(4):e1006667.
    [16] Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2002, 277(34):31079-31088.
    [17] Zhang XX, Cao SL, Li W, Sun HY, Deng Y, Zhang AX, Chen HG. Functional characterization of calcineurin- responsive transcription factors Fg01341 and Fg01350 in Fusarium graminearum. Frontiers in Microbiology, 2020, 11:597998.
    [18] Lee SC, Li A, Calo S, Heitman J. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathogens, 2013, 9(9):e1003625.
    [19] Paul AS, Saha S, Engelberg K, Jiang RHY, Coleman BI, Kosber AL, Chen CT, Ganter M, Espy N, Gilberger TW, Gubbels MJ, Duraisingh MT. Parasite calcineurin regulates host cell recognition and attachment by apicomplexans. Cell Host & Microbe, 2015, 18(1):49-60.
    [20] Koyano T, Konishi M, Martin SG, Ohya Y, Hirata D, Toda T, Kume K. Casein kinase 1γ gamma ensures monopolar growth polarity under incomplete DNA replication downstream of Cds1 and calcineurin in fission yeast. Molecular and Cellular Biology, 2015, 35(9):1533-1542.
    [21] Viana RA, Pinar M, Soto T, Coll PM, Cansado J, Pérez P. Negative functional interaction between cell integrity MAPK pathway and Rho1 GTPase in fission yeast. Genetics, 2013, 195(2):421-432.
    [22] Martín-García R, Arribas V, Coll PM, Pinar M, Viana RA, Rincón SA, Correa-Bordes J, Ribas JC, Pérez P. Paxillin-mediated recruitment of calcineurin to the contractile ring is required for the correct progression of cytokinesis in fission yeast. Cell Reports, 2018, 25(3):772-783.e4.
    [23] Kalem MC, Subbiah H, Leipheimer J, Glazier VE, Panepinto JC. Puf4 mediates post-transcriptional regulation of cell wall biosynthesis and caspofungin resistance in Cryptococcus neoformans. mBio, 2021, 12(1):e03225-20
    [24] Fox DS, Cox GM, Heitman J. Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryotic Cell, 2003, 2(5):1025-1035.
    [25] Kraus PR, Fox DS, Cox GM, Heitman J. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Molecular Microbiology, 2003, 48(5):1377-1387.
    [26] Schumacher J, de Larrinoa IF, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell, 2008, 7(4):584-601.
    [27] Juvvadi PR, Kuroki Y, Arioka M, Nakajima H, Kitamoto K. Functional analysis of the calcineurin-encoding gene cnaA from Aspergillus oryzae:evidence for its putative role in stress adaptation. Archives of Microbiology, 2003, 179(6):416-422.
    [28] Harel A, Bercovich S, Yarden O. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Molecular Plant-Microbe Interactions, 2006, 19(6):682-693.
    [29] Choi J, Kim Y, Kim S, Park J, Lee YH. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genetics and Biology, 2009, 46(3):243-254.
    [30] Cervantes-Chávez JA, Ali S, Bakkeren G. Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. Molecular Plant-Microbe Interactions, 2011, 24(2):219-232.
    [31] Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryotic Cell, 2003, 2(3):422-430.
    [32] Chen YL, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas FF, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryotic Cell, 2011, 10(6):803-819.
    [33] Chen YL, Lehman VN, Lewit Y, Averette AF, Heitman J. Calcineurin governs thermotolerance and virulence of Cryptococcus gattii. G3:Bethesda, Md, 2013, 3(3):527-539.
    [34] Steinbach WJ, Cramer RA, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, Kirkpatrick WR, Patterson TF, Benjamin DK, Heitman J, Perfect JR. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5(7):1091-1103.
    [35] Egan JD, García-Pedrajas MD, Andrews DL, Gold SE. Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. Molecular Plant-Microbe Interactions, 2009, 22(10):1293-1301.
    [36] Bader T, Bodendorfer B, Schröppel K, Morschhäuser J. Calcineurin is essential for virulence in Candida albicans. Infection and Immunity, 2003, 71(9):5344-5354.
    [37] Li F, Wang ZL, Zhang LB, Ying SH, Feng MG. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana. Applied Microbiology and Biotechnology, 2015, 99(2):827-840.
    [38] Hou YH, Hsu LH, Wang HF, Lai YH, Chen YL. Calcineurin Regulates Conidiation, Chlamydospore Formation and Virulence in Fusarium oxysporum f. sp. lycopersici. Frontiers in Microbiology, 2020, 11:539702.
    [39] Kozubowski L, Aboobakar EF, Cardenas ME, Heitman J. Calcineurin colocalizes with P-bodies and stress granules during thermal stress in Cryptococcus neoformans. Eukaryotic Cell, 2011, 10(11):1396-1402.
    [40] Chen YL, Konieczka JH, Springer DJ, Bowen SE, Zhang J, Silao FGS, Bungay AAC, Bigol UG, Nicolas MG, Abraham SN, Thompson DA, Regev A, Heitman J. Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3: Genes/Genomes/Genetics, 2012, 2(6):675-691.
    [41] Cruz MC. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. The EMBO Journal, 2001, 20(5):1020-1032.
    [42] Juvvadi P, Steinbach W. Calcineurin orchestrates hyphal growth, septation, drug resistance and pathogenesis of Aspergillus fumigatus:where do we go from here? Pathogens, 2015, 4(4):883-893.
    [43] Yu SJ, Chang YL, Chen YL. Calcineurin signaling:lessons from Candida species. FEMS Yeast Research, 2015, 15(4):fov016.
    [44] Serrano R, Ruiz A, Bernal D, Chambers JR, Ariño J. The transcriptional response to alkaline pH in Saccharomyces cerevisiae:evidence for calcium-mediated signalling. Molecular Microbiology, 2002, 46(5):1319-1333.
    [45] Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barceló A, Ariño J. Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 2004, 279(42):43614-43624.
    [46] Heath VL, Shaw SL, Roy S, Cyert MS. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryotic Cell, 2004, 3(3):695-704.
    [47] Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. Microbial Cell:Graz, Austria, 2015, 2(6):182-196.
    [48] Matsumoto TK, Ellsmore AJ, Cessna SG, Low PS, Pardo JM, Bressan RA, Hasegawa PM. An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277(36):33075-33080.
    [49] Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. Calcineurin A of Candida albicans:involvement in antifungal tolerance, cell morphogenesis and virulence. Molecular Microbiology, 2003, 48(4):959-976.
    [50] Marquina M, González A, Barreto L, Gelis S, Muñoz I, Ruiz A, Álvarez MC, Ramos J, Ariño J. Modulation of yeast alkaline cation tolerance by Ypi1 requires calcineurin. Genetics, 2012, 190(4):1355-1364.
    [51] Maeda T, Sugiura R, Kita A, Saito M, Lu D, Yi H, Lu YB, Fujita Y, Takegawa K, Shuntoh H, Kuno T. Pmr1, a P-type ATPase, and Pdt1, an Nramp homologue, cooperatively regulate cell morphogenesis in fission yeast:The importance of Mn2+ homeostasis. Genes to Cells, 2004, 9(1):71-82.
    [52] Pinchai N, Juvvadi PR, Fortwendel JR, Perfect BZ, Rogg LE, Asfaw YG, Steinbach WJ. The Aspergillus fumigatus P-type Golgi apparatus Ca2+/Mn2+ ATPase PmrA is involved in cation homeostasis and cell wall integrity but is not essential for pathogenesis. Eukaryotic Cell, 2010, 9(3):472-476.
    [53] Dinamarco TM, Freitas FZ, Almeida RS, Brown NA, dos Reis TF, Ramalho LNZ, Savoldi M, Goldman MHS, Bertolini MC, Goldman GH. Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection. PLoS One, 2012, 7(5):e37591.
    [54] Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryotic Cell, 2008, 7(7):1085-1097.
    [55] Hagiwara D, Kondo A, Fujioka T, Abe K. Functional analysis of C2H2 zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Current Genetics, 2008, 54(6):325-338.
    [56] Hernández-Ortiz P, Espeso EA. Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in Aspergillus nidulans. Molecular Microbiology, 2013, 89(3):532-551.
    [57] Zou X, Tu GW, Zan ZQ. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223. Bioprocess and Biosystems Engineering, 2014, 37(10):2131-2136.
    [58] Zou X, Zhou YP, Yang ST. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnology and Bioengineering, 2013, 110(8):2105-2113.
    [59] Chen XL, Xu GQ, Xu N, Zou W, Zhu P, Liu LM, Chen J. Metabolic engineering of Torulopsis glabrata for malate production. Metabolic Engineering, 2013, 19:10-16.
    [60] Zelle RM, Hulster ED, Kloezen W, Pronk JT, Van Maris AJA. Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Applied and Environmental Microbiology, 2010, 76(3):744-750.
    [61] Wang K, Chi Z, Liu GL, Qi CY, Jiang H, Hu Z, Chi ZM. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921. International Journal of Biological Macromolecules, 2020, 156(1):1053-1063.
    [62] Lu YH, Pan ZH, Tao J, An FL. Induced effect of Ca2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling. Journal of Bioscience and Bioengineering, 2018, 125(2):205-210.
    [63] Chung KR. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Applied and Environmental Microbiology, 2003, 69(2):1187-1196.
    [64] Xu YN, Xia XX, Zhong JJ. Induced effect of Na+ on ganoderic acid biosynthesis in static liquid culture of Ganoderma lucidum via calcineurin signal transduction. Biotechnology and Bioengineering, 2013, 110(7):1913-1923.
    [65] Zhang X, Ren A, Li MJ, Cao PF, Chen TX, Zhang G, Shi L, Jiang AL, Zhao MW. Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Applied and Environmental Microbiology, 2016, 82(14):4112-4125.
    [66] Liu R, Shi L, Zhu T, Yang T, Ren A, Zhu J, Zhao MW. Cross talk between nitric oxide and calcium-calmodulin regulates ganoderic acid biosynthesis in Ganoderma lucidum under heat stress. Applied and Environmental Microbiology, 2018, 84(10):e00043-18.
    [67] Zhou JW, Zhou HY, Du GC, Liu LM, Chen J. Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Letters in Applied Microbiology, 2010, 51(3):264-271.
    [68] Wei XC, Liu CQ, An FL, Lu YH. Induced effect of Ca2+ on curvulamine synthesis by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochemistry, 2019, 83:18-26.
    [69] Su ZP, Wang FQ, Xie YH, Xie H, Mao GT, Zhang HS, Song AD, Zhang ZY. Reassessment of the role of CaCO3 in n-butanol production from pretreated lignocellulosic biomass by Clostridium acetobutylicum. Scientific Reports, 2020, 10:17956.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯莹莹,徐兴然,邹祥. 钙调磷酸酶信号调控真菌生长代谢、毒力及抗逆性能[J]. 微生物学报, 2021, 61(12): 3844-3855

复制
分享
文章指标
  • 点击次数:617
  • 下载次数: 1307
  • HTML阅读次数: 3631
  • 引用次数: 0
历史
  • 收稿日期:2021-02-18
  • 最后修改日期:2021-04-21
  • 在线发布日期: 2021-12-17
文章二维码