整合子系统介导沙门菌耐药性的研究进展
作者:
基金项目:

国家重点研发专项(2017YFC1601200);广东省“珠江人才计划”本土创新团队(2017BT01S174);广东省科学院实施创新驱动发展能力专项(2018GDASCX-0102)


Research progress of integron-mediated antimicrobial resistance of Salmonella
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    沙门菌(Salmonella spp.)是公共卫生学上具有重要意义的人畜共患病病原菌。人、畜感染沙门菌后会引起伤寒、副伤寒、胃肠炎、败血症和肠外局灶性感染等疾病。抗生素是治疗沙门菌严重感染的有效手段,随着临床和畜牧业中抗生素的大量使用,使得沙门菌的耐药情况日益严重。整合子是普遍存在于细菌中的一种可移动基因元件,可有效捕获外源基因确保其表达,并复合于转座子、质粒等,使多种耐药基因在细菌种内或者种间进行传播。在过去的二十年中,随着新基因盒和复杂整合子的不断出现,导致整合子系统迅速进化。整合子在沙门菌耐药性传播过程中具有非常重要的作用,因此,本文对整合子系统的分子结构、分类、作用机制,以及沙门菌中存在的Ⅰ、Ⅱ、Ⅲ类整合子介导的耐药性及现有检测方法的研究进展进行综述,以期为沙门菌耐药性研究提供参考。

    Abstract:

    Salmonella are a group of zoonotic pathogens threatening the public health. The invasion of Salmonella into humans and livestock causes typhoid and paratyphoid fever, gastroenteritis, septicaemia, and extraintestinal focal infections. Antimicrobials are an effective treatment for serious Salmonella infections. However, the extensive use of antimicrobials in clinical practice and animal husbandry has led to increasing antimicrobial resistance among Salmonella. Integrons, mobile genetic elements ubiquitous in bacteria, can efficiently capture exogenous genes and ensure their expression. Moreover, these integrons could be complexed with transposons, plasmids, etc., consequently enabling the intra- and interspecies dissemination of multiple antimicrobial resistance genes in bacteria. Over the past two decades, the emergence of new gene arrangements and complex integrons in gene cassettes has led to the rapid evolution of integron systems. Integrons play a significant role in the spread of antimicrobial resistance in Salmonella. In this paper, we summarized the molecular structure, classification, and action mechanism of integron systems, and reviewed the progress of research on class I, II, and III integron-mediated antimicrobial resistance presented in Salmonella, together with the available detection methods, aiming to provide a reference for the research on antimicrobial resistance of Salmonella.

    参考文献
    [1] White AE, Ciampa N, Chen YX, Kirk M, Nesbitt A, Bruce BB, Walter ES. Characteristics of Campylobacter and Salmonella infections and acute gastroenteritis in older adults in Australia, Canada, and the United States. Clinical Infectious Diseases, 2019, 69(9):1545-1552.
    [2] Ricke SC, Kim SA, Shi Z, Park SH. Molecular-based identification and detection of Salmonella in food production systems:current perspectives. Journal of Applied Microbiology, 2018, 125(2):313-327.
    [3] Yang XJ, Wu QP, Huang JH, Wu S, Zhang JM, Chen L, Wei XH, Ye YW, Li Y, Wang J, Lei T, Xue L, Pang R, Zhang YX. Prevalence and characterization of Salmonella isolated from raw vegetables in China. Food Control, 2020, 109:106915.
    [4] Yang XJ, Wu QP, Zhang JM, Huang JH, Chen L, Wu S, Zeng HY, Wang J, Chen MT, Wu HM, Gu QH, Wei XH. Prevalence, bacterial load, and antimicrobial resistance of Salmonella serovars isolated from retail meat and meat products in China. Frontiers in Microbiology, 2019, 10:2121.
    [5] Yang XJ, Huang JH, Zhang YX, Liu SR, Chen L, Xiao C, Zeng HY, Wei XH, Gu QH, Li Y, Wang J, Ding Y, Zhang JM, Wu QP. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. Science of the Total Environment, 2020, 713:136385.
    [6] Zheng L, Zhu LW, Guo XJ, Chen P. Research progress of antimicrobial resistance of major epidemic serotypes of Salmonella. Jiangsu Agricultural Sciences, 2020, 48(6):8-12. (in Chinese) 郑林, 祝令伟, 郭学军, 陈萍. 沙门氏菌主要流行血清型耐药性的研究进展. 江苏农业科学, 2020, 48(6):8-12.
    [7] 伍好. 肉鸡源性肠杆菌科细菌中耐药基因、整合子及ISCR1元件的研究. 山东大学硕士学位论文, 2016.
    [8] Chen WF, Ye T, Li L, Zhang CH. Research progress of integrons in bacterial resistance. Journal of Jilin Medical University, 2019, 40(3):216-218. (in Chinese) 陈文凤, 叶彤, 李琳, 张宸豪. 整合子在细菌耐药中的研究进展. 吉林医药学院学报, 2019, 40(3):216-218.
    [9] Estabraghi E, Salehi TZ, Amini K, Jamshidian M. Molecular identification of extended-spectrum β-lactamase and integron genes in Klebsiella pneumonia. JNMA; Journal of the Nepal Medical Association, 2016, 54(202):72-78.
    [10] Liu YC, Yu BL, Gao F, Li FY, Song SY, Guo Y, Yu LH, Liu MC. New advances in the mechanism of drug resistance transmission in the integron-gene cassette system. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(3):244-247. (in Chinese) 刘耀川, 于本良, 高锋, 李凤元, 宋淑英, 郭洋, 于立辉, 刘明春. 整合子-基因盒系统耐药性传递机制研究新进展. 中国预防兽医学报, 2017, 39(3):244-247.
    [11] Kotlarska E, Łuczkiewicz A, Pisowacka M, Burzyński A. Antibiotic resistance and prevalence of class 1 and 2 integrons in Escherichia coli isolated from two wastewater treatment plants, and their receiving waters (Gulf of Gdansk, Baltic Sea, Poland). Environmental Science and Pollution Research, 2015, 22(3):2018-2030.
    [12] Hosseini SMJ, Naeini NS, Khaledi A, Daymad SF, Esmaeili D. Evaluate the relationship between class 1 integrons and drug resistance genes in clinical isolates of Pseudomonas aeruginosa. The Open Microbiology Journal, 2016, 10:188-196.
    [13] Liu M, Li WX, Li SR. Progress in researches on bacterial integrons in antibiotic resistance. Chinese Journal of Microecology, 2020, 32(4):465-468. (in Chinese) 刘秘, 李万翔, 李世荣. 整合子与细菌耐药性的相关研究进展. 中国微生态学杂志, 2020, 32(4):465-468.
    [14] Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba AE, Blommestein I, Vogel J, Helaine S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science, 2018, 362(6419):1156-1160.
    [15] Rui YY, Lu WT, Li S, Cheng CC, Sun JJ, Yang Q. Integrons and insertion sequence common region 1(ISCR1) of carbapenem-non-susceptible Gram-negative bacilli in fecal specimens from 5000 patients in Southern China. International Journal of Antimicrobial Agents, 2018, 52(5):571-576.
    [16] Amos GCA, Ploumakis S, Zhang LH, Hawkey PM, Gaze WH, Wellington EMH. The widespread dissemination of integrons throughout bacterial communities in a riverine system. The ISME Journal, 2018, 12(3):681-691.
    [17] Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, resistome and resistance mechanisms:a bacterial perspective. Frontiers in Microbiology, 2018, 9:2066.
    [18] Ghaly TM, Geoghegan JL, Tetu SG, Gillings MR. The peril and promise of integrons:beyond antibiotic resistance. Trends in Microbiology, 2020, 28(6):455-464.
    [19] Escudero JA, Loot C, Nivina A, Mazel D. The integron:adaptation on demand. Microbiology Spectrum, 2015, 3(2):MDNA3-MDNA0019-2014.
    [20] Wei QH, Jiang XF, Lü Y. Advances in integrons of bacteria. Chinese Journal of Antibiotics, 2008, 33(1):1-5, 40. (in Chinese) 魏取好, 蒋晓飞, 吕元. 细菌整合子研究进展. 中国抗生素杂志, 2008, 33(1):1-5, 40.
    [21] Ouyang RZ, He YY, Xu H. Advances in integrase regulations of bacteria-A review. Acta Microbiologica Sinica, 2015, 55(10):1231-1237. (in Chinese) 欧阳润泽, 贺艳艳, 徐海. 细菌整合子中整合酶基因调控的研究进展. 微生物学报, 2015, 55(10):1231-1237.
    [22] Han C, Wang LF. Integrating the research progress of relationship between bacterial drug resistance. World Latest Medicine Information, 2017, 17(99):61-62. (in Chinese) 韩超, 王凌峰. 整合子与细菌耐药关系的研究进展. 世界最新医学信息文摘, 2017, 17(99):61-62.
    [23] Ghaly TM, Chow L, Asher AJ, Waldron LS, Gillings MR. Evolution of class 1 integrons:Mobilization and dispersal via food-borne bacteria. PLoS ONE, 2017, 12(6):e0179169.
    [24] Noh EB, Kim YB, Jeon HY, Seo KW, Son SH, Lee YJ. Antimicrobial resistance and genetic diversity of Salmonella serotypes recovered from edible pork offal from Korea. Microbial Drug Resistance:Larchmont, N Y, 2019, 25(10):1514-1520.
    [25] Langata LM, Maingi JM, Musonye HA, Kiiru J, Nyamache AK. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Research Notes, 2019, 12(1):1-6.
    [26] Meng XF, Zhang ZF, Li KT, Wang Y, Xia XD, Wang X, Xi ML, Meng JH, Cui SH, Yang BW. Antibiotic susceptibility and molecular screening of class I integron in Salmonella isolates recovered from retail raw chicken carcasses in China. Microbial Drug Resistance:Larchmont, N Y, 2017, 23(2):230-235.
    [27] Gassama-Sow A, Aïdara-Kane A, Raked N, Denis F, Ploy MC. Integrons in Salmonella keurmassar, Senegal. Emerging Infectious Diseases, 2004, 10(7):1339-1341.
    [28] Michael GB, Cardoso M, Schwarz S. Molecular analysis of multiresistant porcine Salmonella enterica subsp. enterica serovar Bredeney isolates from Southern Brazil:identification of resistance genes, integrons and a group II intron. International Journal of Antimicrobial Agents, 2008, 32(2):120-129.
    [29] Hall RM. Salmonella genomic Islands and antibiotic resistance in Salmonella enterica. Future Microbiology, 2010, 5(10):1525-1538.
    [30] Luk-In S, Pulsrikarn C, Bangtrakulnonth A, Chatsuwan T, Kulwichit W. Occurrence of a novel class 1 integron harboring qnrVC4 in Salmonella Rissen. Diagnostic Microbiology and Infectious Disease, 2017, 88(3):282-286.
    [31] Wannaprasat W, Padungtod P, Chuanchuen R. Class 1 integrons and virulence genes in Salmonella enterica isolates from pork and humans. International Journal of Antimicrobial Agents, 2011, 37(5):457-461.
    [32] Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, resistome and resistance mechanisms:a bacterial perspective. Frontiers in Microbiology, 2018, 9:2066.
    [33] Mendes Moreira A, Couvé-Deacon E, Bousquet P, Chainier D, Jové T, Ploy MC, Barraud O. Proteae:a reservoir of class 2 integrons? Journal of Antimicrobial Chemotherapy, 2019, 74(6):1560-1562.
    [34] Wei QH, Hu QF, Li SS, Lu HY, Chen GQ, Shen BQ, Zhang P, Zhou YL. A novel functional class 2 integron in clinical Proteus mirabilis isolates. Journal of Antimicrobial Chemotherapy, 2014, 69(4):973-976.
    [35] Asgharpour F, Mahmoud S, Marashi A, Moulana Z. Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella Infantis isolates. Iranian Journal of Microbiology, 2018, 10(2):104-110.
    [36] Argüello H, Guerra B, Rodríguez I, Rubio P, Carvajal A. Characterization of antimicrobial resistance determinants and class 1 and class 2 integrons in Salmonella enterica spp., multidrug-resistant isolates from pigs. Genes, 2018, 9(5):256.
    [37] Doublet B, Praud K, Nguyen-Ho-bao T, Argudin MA, Bertrand S, Butaye P, Cloeckaert A. Extended-spectrum- lactamase- and AmpC -lactamase-producing D-tartrate-positive Salmonella enterica serovar Paratyphi B from broilers and human patients in Belgium, 2008-10. Journal of Antimicrobial Chemotherapy, 2014, 69(5):1257-1264.
    [38] Ahmed AM, Nakano H, Shimamoto T. Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan:description of an unusual class 2 integron. Journal of Antimicrobial Chemotherapy, 2005, 55(3):371-374.
    [39] Ahmed AM, Ishida Y, Shimamoto T. Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan. Journal of Applied Microbiology, 2009, 106(2):402-409.
    [40] Gillings MR. Integrons:past, present, and future. Microbiology and Molecular Biology Reviews, 2014, 78(2):257-277.
    [41] Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P. Integrons in Enterobacteriaceae:diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 2018, 51(2):167-176.
    [42] Kargar M, Mohammadalipour Z, Doosti A, Lorzadeh S, Japoni-Nejad A. High prevalence of class 1 to 3 integrons among multidrug-resistant diarrheagenic Escherichia coli in southwest of Iran. Osong Public Health and Research Perspectives, 2014, 5(4):193-198.
    [43] Asgharpour F, Mahmoud S, Marashi A, Moulana Z. Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella Infantis isolates. Iranian Journal of Microbiology, 2018, 10(2):104-110.
    [44] 赵永静. 多重PCR检测整合子及其在分析金葡菌耐药中的作用. 郑州大学硕士学位论文, 2011.
    [45] Feng Y, Yuan JL, Wu Y, Qi Y, Chen T. Using reverse PCR to analysis flanking DNA regions of class Ⅰ integrons. International Journal of Laboratory Medicine, 2013, 34(8):919-920. (in Chinese) 冯银, 袁金玲, 伍勇, 漆涌, 陈体. 反向PCR扩增Ⅰ类整合酶基因侧翼序列. 国际检验医学杂志, 2013, 34(8):919-920.
    [46] Xu JX, Jia XB, Shen HY, Xu M, Dou XH. Study on detection of bacterial integrons by multiple LAMP. China Poultry, 2019, 41(14):64-66. (in Chinese) 徐敬潇, 贾雪波, 沈海玉, 许明, 窦新红. 多重LAMP检测细菌整合子的研究. 中国家禽, 2019, 41(14):64-66.
    [47] Qin XJ, Sun NY, Li CY, Yang R, Wu YB. Research progress of Salmonella detection methods in food. China Brewing, 2020, 39(9):18-24. (in Chinese) 覃湘婕, 孙宁与, 李春尧, 杨荣, 吴永宝. 食品中沙门氏菌检测方法研究进展. 中国酿造, 2020, 39(9):18-24.
    [48] Mazel D, Dychinco B, Webb VA, Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science, 1998, 280(5363):605-608.
    [49] Lei T, Zhang JM, Jiang FF, He M, Zeng HY, Chen MT, Pang R, Wu HM, Wu S, Wang J, Ding Y, Wu QP. Characterization of class 1 integrons harboring blaVEB-1 in Vibrio parahaemolyticus isolated from ready-to-eat foods in China. International Journal of Food Microbiology, 2020, 318:108473.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李豫,杨小鹃,张菊梅,王涓,吴清平. 整合子系统介导沙门菌耐药性的研究进展[J]. 微生物学报, 2021, 61(12): 3918-3927

复制
分享
文章指标
  • 点击次数:322
  • 下载次数: 955
  • HTML阅读次数: 1089
  • 引用次数: 0
历史
  • 收稿日期:2021-03-26
  • 最后修改日期:2021-05-11
  • 在线发布日期: 2021-12-17
文章二维码