VPA1500基因缺失对副溶血弧菌生物学特性和致病性的影响
作者:
基金项目:

国家自然科学基金(31702277);上海市自然科学基金(17ZR1437200);中央级公益性科研院所基本科研业务费专项资金(2020JB07)


Study on biological characteristics and pathogenicity of VPA1500 gene knock-out mutant of Vibrio parahaemolyticus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Ⅵ型分泌系统(T6SS)是细菌的一种毒力因子分泌系统,通过分泌蛋白参与调控细菌的环境适应性和毒力。副溶血弧菌具有两个T6SS系统(T6SS1和T6SS2)。[目的] 前期通过差异蛋白质组学技术筛选到副溶血弧菌T6SS1相关的分泌蛋白,本文选择其中的VPA1500为研究对象,研究其基因缺失对副溶血弧菌的生物学特性及致病性的影响。[方法] 利用同源重组技术构建缺失株ΔVPA1500和互补株CΔVPA1500;分析各菌株生长特性、在体外的细菌竞争能力、运动性、细菌鞭毛相关基因的转录水平及生物被膜形成能力的差异,比较各菌株对细胞毒性、小鼠毒力、动物组织载菌量以及组织病理学变化的影响。[结果] 与野生株相比,VPA1500基因缺失后不影响细菌的生长能力、生物被膜形成能力和群集运动,然而ΔVPA1500的浮泳运动能力显著下降;进一步通过透射电镜观察和实时定量PCR检测发现,VPA1500缺失影响副溶血弧菌鞭毛的形成;细菌竞争实验显示缺失VPA1500基因降低了副溶血弧菌野生株体外对大肠杆菌的杀伤能力;ΔVPA1500对细胞毒性、小鼠毒力以及在动物组织的定殖能力均显著低于野生株,互补株毒力基本恢复至野生株水平;组织病理学结果进一步表明,缺失VPA1500基因能够降低副溶血弧菌对小鼠组织的损伤。[结论] VPA1500参与副溶血弧菌的体外细菌竞争能力、浮游运动能力和致病性。

    Abstract:

    The type Ⅵ secretion system (T6SS) is widespread in bacterial pathogens and used to deliver virulence effector proteins into target cells. Vibrio parahaemolyticus also harbours T6SS gene clusters and possesses two T6SSs, T6SS1 and T6SS2. [Objective] In previous work, we identified several potential T6SS effectors by using comparative proteomics. In this study, VPA1500 was chosen to explore the roles on biological characteristics and pathogenicity of Vibrio parahaemolyticus.[Methods] The deletion mutant ΔVPA1500 and complementary strain CΔVPA1500 were constructed by using homologous recombination technology. Growth characteristics, anti-bacterial activity in vivo, motility, the transcription level of flagella-related genes, and biofilm formation ability were analyzed in the wild-type strain (WT), ΔVPA1500 and CΔVPA1500. Furthermore, cytotoxicity to host cell, lethality rate in mice, bacterial colonization, and histopathological changes were also analyzed between WT and ΔVPA1500. [Results] Compared with WT, there were no significant changes in growth characteristics, swarming ability, and biofilm formation of ΔVPA1500 (P>0.05), while swimming ability was significantly decreased (P<0.05). Transmission electron micrographs showed that VPA1500 deletion affected the formation of bacterial flagella in V. parahaemolyticus. qPCR results also showed that the VPA1500 gene significantly inhibited the transcription level of some flagella-related genes in WT. Bacterial competition experiments showed that the deletion of VPA1500 reduced the anti-bacterial activity of Vibrio parahaemolyticus against E. coli in vitro. However, ΔVPA1500 showed significantly weaker cytotoxicity to Hela cells than WT. In addition, ΔVPA1500 exhibited attenuated virulence in mice that showed lower a lethality rate than that of the wild-type strain. Moreover, VPA1500 deletion affected the colonization in heart, liver, spleen, and kidney of mice, whereas the complementation strain restored the virulence to resemble that of WT. Histopathological analyses further demonstrated that detection of VPA1500 could reduce the damage of Vibrio parahaemolyticus to tissues in mice. [Conclusion] The VPA1500 plays an important role in swimming motility, pathogenicity, and anti-bacterial activity in V. parahaemolyticus.

    参考文献
    [1] Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences, 2006, 103(5):1528-1533.
    [2] Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez, CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006, 312(5779):1526-1530.
    [3] 蒋蔚. Ⅵ型分泌系统T6SS-1核心组分及烯醇化酶在副溶血弧菌致病过程中的作用. 南京农业大学学位论文, 2014.
    [4] Ho BT, Basler M, Mekalanos JJ. Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science, 2013, 342(6155):250-253.
    [5] Yu KW, Xue P, Fu Y, Yang L. T6SS mediated stress responses for bacterial environmental survival and host adaptation. International Journal of Molecular Sciences, 2021, 22(2):478.
    [6] Ma AT, McAuley S, Pukatzki S, Mekalanos JJ. Translocation of a Vibrio cholerae type Ⅵ secretion effector requires bacterial endocytosis by host cells. Cell Host & Microbe, 2009, 5(3):234-243.
    [7] Yu Y, Zhang Y, Li J, Yang H, Song HH, Fang WH. VPA1045 and VPA1049 of Vibrio parahaemolyticus regulate translocation of Hcp2. Acta Microbiologica Sinica, 2012, 52(8):954-961. (in Chinese) 俞盈, 张晏, 李俊, 杨虹, 宋厚辉, 方维焕. 副溶血弧菌VPA1045和VPA1049调节Hcp2蛋白转位. 微生物学报, 2012, 52(8):954-961.
    [8] Guo D, Yang ZY, Zheng XY, Kang SM, Yang ZK, Xu YF, Shi C, Tian HY, Xia XD. Thymoquinone inhibits biofilm formation and attachment-invasion in host cells of Vibrio parahaemolyticus. Foodborne Pathogens and Disease, 2019, 16(10):671-678.
    [9] Bai XR, Wang Q, Ling J, Wan Y, Chen YJ, Fang WH, Sun WD, Jiang W. Comparison of biological characteristics and cytopathogenicities between T3SS1 and T3SS2 in Vibrio parahaemolyticus. Acta Microbiologica Sinica, 2018, 58(3):455-466. (in Chinese) 白雪瑞, 王权, 凌娇, 万莹, 陈永军, 方维焕, 孙卫东, 蒋蔚. T3SS1和T3SS2影响副溶血弧菌生物学特性及细胞致病性的比较. 微生物学报, 2018, 58(3):455-466.
    [10] Zhang T, Yang MH. Molecular mechanisms of virulence genes expression in Vibrio parahaemolyticus. Acta Microbiologica Sinica, 2020, 60(7):1345-1357. (in Chinese) 张婷, 杨梦华. 副溶血弧菌的毒力基因表达调控的分子机制. 微生物学报, 2020, 60(7):1345-1357.
    [11] Ben-Yaakov R, Salomon D. The regulatory network of Vibrio parahaemolyticus type Ⅵ secretion system 1. Environmental Microbiology, 2019, 21(7):2248-2260.
    [12] 白雪瑞. Ⅵ型分泌系统2及Ⅲ型分泌系统对副溶血弧菌生物学特性和致病性的影响. 南京农业大学学位论文, 2017.
    [13] Fridman CM, Keppel K, Gerlic M, Bosis E, Salomon D. A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors. Nature Communications, 2020, 11:1085.
    [14] Salomon D, Klimko JA, Orth K. H-NS regulates the Vibrio parahaemolyticus type Ⅵ secretion system 1. Microbiology:Reading, England, 2014, 160(Pt 9):1867-1873.
    [15] Bernal P, Llamas MA, Filloux A. Type Ⅵ secretion systems in plant-associated bacteria. Environmental Microbiology, 2018, 20(1):1-15.
    [16] Zhu PC, Li YM, Yang X, Zou HF, Zhu XL, Niu XN, Xu LH, Jiang W, Huang S, Tang JL, He YQ. Type Ⅵ secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola. Research in Microbiology, 2020, 171(2):64-73.
    [17] 凌娇. 副溶血弧菌qPCR检测及T6SS-1效应因子的筛选和功能研究. 南京农业大学学位论文, 2018.
    [18] Ben-Yaakov R, Salomon D. The regulatory network of Vibrio parahaemolyticus type Ⅵ secretion system 1. Environmental Microbiology, 2019, 21(7):2248-2260.
    [19] Gu D, Meng HM, Li Y, Ge HJ, Jiao XN. A GntR family transcription factor (VPA1701) for swarming motility and colonization of Vibrio parahaemolyticus. Pathogens, 2019, 8(4):235.
    [20] Noh HJ, Nagami S, Kim MJ, Kim J, Lee NK, Lee KH, Park SJ. Role of VcrD1 protein in expression and secretion of flagellar components in Vibrio parahaemolyticus. Archives of Microbiology, 2015, 197(3):397-410.
    [21] Wang SH, Liu X, Xu X, Yang DH, Wang D, Han XG, Shi YH, Tian MX, Ding C, Peng DX, Yu SQ. Escherichia coli type Ⅲ secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Frontiers in Microbiology, 2016, 7:1387.
    [22] Salomon D, Gonzalez H, Updegraff BL, Orth K. Vibrio parahaemolyticus type Ⅵ secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One, 2013, 8(4):e61086.
    [23] Une T. Studies on the pathogenicity of Yersinia enterocolitica. Microbiology and Immunology, 1977, 21(7):349-363.
    [24] Ritchie JM, Waldor MK. Vibrio cholerae Interactions with the Gastrointestinal Tract:Lessons from Animal Studies. Molecular Mechanisms of Bacterial Infection Via the Gut, 2009.
    [25] Liu X, Zhuo SY, Jing XY, Yuan Y, Rensing C, Zhou SG. Flagella act as Geobacter biofilm scaffolds to stabilize biofilm and facilitate extracellular electron transfer. Biosensors and Bioelectronics, 2019, 146:111748.
    [26] Khan F, Tabassum N, Anand R, Kim YM. Motility of Vibrio spp.:regulation and controlling strategies. Applied Microbiology and Biotechnology, 2020, 104(19):8187-8208.
    [27] Kim YK, McCarter LL. Cross-regulation in Vibrio parahaemolyticus:compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK. Journal of Bacteriology, 2004, 186(12):4014-4018.
    [28] Kim YK, McCarter LL. Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. Journal of Bacteriology, 2000, 182(13):3693-3704.
    [29] Barketi-Klai A, Monot M, Hoys S, Lambert-Bordes S, Kuehne SA, Minton N, Collignon A, Dupuy B, Kansau I. The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection. PLoS One, 2014, 9(5):e96876.
    [30] Tian Y, Wang QY, Liu Q, Ma Y, Cao XD, Guan LY, Zhang YX. Involvement of LuxS in the regulation of motility and flagella biogenesis in Vibrio alginolyticus. Bioscience, Biotechnology, and Biochemistry, 2008, 72(4):1063-1071.
    [31] Gode-Potratz CJ, Chodur DM, McCarter LL. Calcium and iron regulate swarming and type Ⅲ secretion in Vibrio parahaemolyticus. Journal of Bacteriology, 2010, 192(22):6025-6038.
    [32] Wu KF, Xu HM, Zheng YQ, Wang LB, Zhang XM, Yin YB. CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Scientific Reports, 2016, 6:29255.
    [33] Yang H, de Souza Santos M, Lee J, Law HT, Chimalapati S, Verdu EF, Orth K, Vallance BA. A novel mouse model of Enteric Vibrio parahaemolyticus infection reveals that the type Ⅲ secretion system 2 effector VopC plays a key role in tissue invasion and gastroenteritis. mBio, 2019, 10(6).
    [34] Guan W, Wang TL, Huang Q, Tian EY, Liu B, Yang YW, Zhao TC. A LuxR-type regulator, AcrR, regulates flagellar assembly and contributes to virulence, motility, biofilm formation, and growth ability of Acidovorax citrulli. Molecular Plant Pathology, 2020, 21(4):489-501.
    [35] Angthong P, Roytrakul S, Jarayabhand P, Jiravanichpaisal P. Involvement of a tachylectin-like gene and its protein in pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in the shrimp, Penaeus monodon. Developmental & Comparative Immunology, 2017, 76:229-237.
    [36] Wiles TJ, Schlomann BH, Wall ES, Betancourt R, Parthasarathy R, Guillemin K. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biology, 2020, 18(3):e3000661.
    [37] Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria:assembly, involvement in colonization and biofilm development. Trends in Microbiology, 2008, 16(1):33-40.
    [38] Silva AJ, Leitch GJ, Camilli A, Benitez JA. Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infection and Immunity, 2006, 74(4):2072-2079.
    [39] Barbosa FDO, de Freitas Neto OC, Batista DFA, de Almeida AM, Rubio MDS, Alves LBR, Vasconcelos RDO, Barrow PA, Berchieri A Jr. Contribution of flagella and motility to gut colonisation and pathogenicity of Salmonella Enteritidis in the chicken. Brazilian Journal of Microbiology, 2017, 48(4):754-759.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李洋洋,王权,郭容,张海洋,刘鹏选,齐瑜,方维焕,孙卫东,蒋蔚. VPA1500基因缺失对副溶血弧菌生物学特性和致病性的影响[J]. 微生物学报, 2021, 61(12): 3937-3951

复制
分享
文章指标
  • 点击次数:370
  • 下载次数: 992
  • HTML阅读次数: 1288
  • 引用次数: 0
历史
  • 收稿日期:2021-02-09
  • 最后修改日期:2021-03-30
  • 在线发布日期: 2021-12-17
文章二维码