嗜热古菌Sulfolobus acidocaldarius核酸内切酶V的重组表达与酶学特征
作者:
基金项目:

国家重点研发计划(2018YFC0310700)


Recombinant expression and enzymatic characterization of endonuclease V from Sulfolobus acidocaldarius
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 表达纯化嗜酸嗜热硫化叶菌(Sulfolobus acidocaldarius)的核酸内切酶V (Saci_0544),对其核酸内切酶活性及酶学特征进行探究。[方法] 将Sulfolobus acidocaldarius核酸内切酶V (SacEndoV)在大肠杆菌中进行重组表达,经亲和层析纯化得到目标蛋白;利用带有不同类型损伤的寡核苷酸作为底物,结合变性聚丙烯酰胺凝胶电泳技术,鉴定SacEndoV对相应损伤寡核苷酸底物的剪切活性。[结果] SacEndoV特异性剪切含脱氧肌苷(Deoxyinosine)的损伤DNA底物,明显偏好单链DNA底物。SacEndoV在70-95℃温度范围内酶活性高,酶活性依赖于二价金属离子,Mg2+为最佳辅助离子,其最佳反应pH为7.5-8.0,高于200 mmol/L的NaCl会明显抑制其剪切活性。损伤DNA中脱氧肌苷3'端相邻的脱氧核糖核苷酸的结构完整性对于SacEndoV识别并剪切相应底物具有重要影响,脱氧肌苷3'端无碱基位点的存在使得SacEndoV不能够切断损伤DNA。此外,经测定SacEndoV对于含肌苷的损伤RNA底物具有剪切活性。[结论] 本研究证实SacEndoV是一种典型的核酸内切酶V,对含脱氧肌苷的损伤DNA具有特异性的内切酶活性,推测其在Sulfolobus acidocaldarius体内参与脱氧肌苷的切除修复。

    Abstract:

    [Objective] To express and purify the endonuclease V (Saci_0544) from Sulfolobus acidocaldarius, identify its endonuclease activity and enzymatic characterization. [Methods] The endonuclease V (SacEndoV) from Sulfolobus acidocaldarius was expressed in E. coli and purified by affinity chromatography; Oligonucleotides with different types of damage were used as substrates to identify the cleavage activity of SacEndoV. [Results] SacEndoV specifically cleaves damaged DNA substrates containing deoxyinosine. Compared with double-stranded DNA substrates, the enzyme has a clear preference for single-stranded DNA substrates in vitro. The enzyme activity of SacEndoV is excellent in the temperature range of 70-95℃. And its enzyme activity depends on the divalent metal ion, Mg2+ is the best cofactor. The optimal reaction pH of SacEndoV is 7.5-8.0, and NaCl with a concentration higher than 200 mmol/L will significantly inhibit its cleavage activity. The structural integrity of deoxyribonucleotide adjacent to the 3' end of deoxyinosine in the damaged DNA is of great significance for SacEndoV to recognize and cleave the corresponding substrates. The presence of AP sites at the 3' end of deoxyinosine prevents SacEndoV from cleaving damaged DNA. In addition, it has been determined that SacEndoV has cleavage activity on damaged RNA substrates containing inosine.[Conclusion] This study confirmed that SacEndoV is a typical endonuclease V with substrate specificity for damaged DNA containing deoxyinosine, and participates in the repair of deoxyinosine in Sulfolobus acidocaldarius.

    参考文献
    [1] Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362(6422):709-715.
    [2] Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Archives of Biochemistry and Biophysics, 2004, 423(1):12-22.
    [3] Morita Y, Shibutani T, Nakanishi N, Nishikura K, Iwai S, Kuraoka I. Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nature Communications, 2013, 4:2273.
    [4] Grunebaum E, Cohen A, Roifman CM. Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Current Opinion in Allergy and Clinical Immunology, 2013, 13(6):630-638.
    [5] Saparbaev M, Laval J. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13):5873-5877.
    [6] Cao WG. Endonuclease V:an unusual enzyme for repair of DNA deamination. Cellular and Molecular Life Sciences, 2013, 70(17):3145-3156.
    [7] Gates FT 3rd, Linn S 3rd. Endonuclease v of Escherichia coli. Journal of Biological Chemistry, 1977, 252(5):1647-1653.
    [8] Yao M, Kow YW. Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. The Journal of Biological Chemistry, 1994, 269(50):31390-31396.
    [9] Yao M, Kow YW. Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. Journal of Biological Chemistry, 1996, 271(48):30672-30676.
    [10] Guo GM, Weiss B. Endonuclease V (nfi) mutant of Escherichia coli K-12. Journal of Bacteriology, 1998, 180(1):46-51.
    [11] Weiss B. Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration. Mutation Research/DNA Repair, 2001, 461(4):301-309.
    [12] Schouten KA, Weiss B. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutation Research/DNA Repair, 1999, 435(3):245-254.
    [13] Huang JM, Lu J, Barany F, Cao WG. Multiple cleavage activities of endonuclease V from Thermotoga maritima:  recognition and strand nicking mechanism. Biochemistry, 2001, 40(30):8738-8748.
    [14] Huang JM, Lu J, Barany F, Cao WG. Mutational analysis of endonuclease V from Thermotoga maritima. Biochemistry, 2002, 41(26):8342-8350.
    [15] Feng H, Dong L, Klutz AM, Aghaebrahim N, Cao WG. Defining amino acid residues involved in DNA-Protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Biochemistry, 2005, 44(34):11486-11495.
    [16] Feng H, Dong L, Cao WG. Catalytic mechanism of endonuclease V:a catalytic and regulatory two-metal model. Biochemistry, 2006, 45(34):10251-10259.
    [17] Zhang ZM, Jia Q, Zhou C, Xie W. Crystal structure of E. coli endonuclease V, an essential enzyme for deamination repair. Scientific Reports, 2015, 5:12754.
    [18] Dalhus B, Arvai AS, Rosnes I, Olsen ØE, Backe PH, Alseth I, Gao HH, Cao WG, Tainer JA, Bjørås M. Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nature Structural & Molecular Biology, 2009, 16(2):138-143.
    [19] Rosnes I, Rowe AD, Vik ES, Forstrøm RJ, Alseth I, Bjørås M, Dalhus B. Structural basis of DNA loop recognition by endonuclease V. Structure, 2013, 21(2):257-265.
    [20] Aravind L, Walker DR, Koonin EV. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Research, 1999, 27(5):1223-1242.
    [21] Moe AE, Ringvoll J, Nordstrand LM, Eide L, Bjørås M, Seeberg E, Rognes T, Klungland A. Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Research, 2003, 31(14):3893-3900.
    [22] Mi RJ, Alford-Zappala M, Kow YW, Cunningham RP, Cao WG. Human endonuclease V as a repair enzyme for DNA deamination. Mutation Research, 2012, 735(1/2):12-18.
    [23] Vik ES, Nawaz MS, Andersen PS, Fladeby C, Bjørås M, Dalhus B, Alseth I. Endonuclease V cleaves at inosines in RNA. Nature Communications, 2013, 4:2271.
    [24] Liu J, He B, Qing H, Kow YW. A deoxyinosine specific endonuclease from hyperthermophile, Archaeoglobus fulgidus:a homolog of Escherichia coli endonuclease V. Mutation Research/DNA Repair, 2000, 461(3):169-177.
    [25] Wang YX, Zhang LK, Zhu XY, Li YT, Shi HQ, Oger P, Yang ZH. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. International Journal of Biological Macromolecules, 2018, 117:17-24.
    [26] Kiyonari S, Egashira Y, Ishino S, Ishino Y. Biochemical characterization of endonuclease V from the hyperthermophilic archaeon, Pyrococcus furiosus. The Journal of Biochemistry, 2014, 155(5):325-333.
    [27] Kanugula S, Pauly GT, Moschel RC, Pegg AE. A bifunctional DNA repair protein from Ferroplasma acidarmanus exhibits O6-alkylguanine-DNA alkyltransferase and endonuclease V activities. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10):3617-3622.
    [28] Grogan DW, Carver GT, Drake JW. Genetic fidelity under harsh conditions:analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14):7928-7933.
    [29] Chen LM, Brügger K, Skovgaard M, Redder P, She QX, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. Journal of Bacteriology, 2005, 187(14):4992-4999.
    [30] Wolferen M, Ajon M, Driessen AJM, Albers SV. How hyperthermophiles adapt to change their lives:DNA exchange in extreme conditions. Extremophiles, 2013, 17(4):545-563.
    [31] Yao M, Kow YW. Interaction of deoxyinosine 3'-endonuclease from Escherichia coli with DNA containing deoxyinosine. Journal of Biological Chemistry, 1995, 270(48):28609-28616.
    [32] Lee CC, Yang YC, Goodman SD, Yu YH, Lin SB, Kao JT, Tsai KS, Fang WH. Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair, 2010, 9(10):1073-1079.
    [33] Su KY, Lin LI, Goodman SD, Yen RS, Wu CY, Chang WC, Yang YC, Cheng WC, Fang WH. DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA Repair, 2018, 64:59-67.
    [34] Shiraishi M, Ishino S, Yamagami T, Egashira Y, Kiyonari S, Ishino Y. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Research, 2015, 43(5):2853-2863.
    [35] Kiyonari S, Tahara S, Shirai T, Iwai S, Ishino S, Ishino Y. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus. Nucleic Acids Research, 2009, 37(19):6439-6453.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋吴涛,刘喜朋,缪晓玲. 嗜热古菌Sulfolobus acidocaldarius核酸内切酶V的重组表达与酶学特征[J]. 微生物学报, 2021, 61(12): 4070-4085

复制
分享
文章指标
  • 点击次数:294
  • 下载次数: 1043
  • HTML阅读次数: 1109
  • 引用次数: 0
历史
  • 收稿日期:2021-03-17
  • 最后修改日期:2021-05-14
  • 在线发布日期: 2021-12-17
文章二维码