桂林罗汉肚洞细菌群落的环境驱动机制及群落构建过程
作者:
基金项目:

国家自然科学基金(91951208);广西自然科学基金(2020GXNSFAA297025);中国地质调查项目(DD20190343)


Environmental driving mechanisms and community assembly process of bacterial communities in the Luohandu Cave, Guilin, Guangxi Province, China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 洞穴被认为是黑暗、寡营养的极端环境,是研究深地生物圈的天然实验室。洞穴内部小生境丰富,不同洞穴水文条件和环境因子等差异大,尽管微生物群落在不同的洞穴中均显示出较强的生境特异性,但对不同相态(固相和液相)环境样本中微生物群落的环境驱动机制以及群落构建的生态学过程的认识却十分薄弱。为了回答上述科学问题。[方法] 本文选择了桂林地区典型的喀斯特洞穴罗汉肚洞,针对洞穴中不同生境(岩壁、沉积物、水潭积水、滴水和地下河河水)进行系统采样以及16S rRNA扩增子的高通量测序分析和理化参数的测试。[结果] 结果表明洞穴中不同生境微生物群落结构具有显著的生境特异性。岩壁样品以放线菌门(Actinobacteria)为优势类群,沉积物中的优势类群则为酸杆菌门(Acidobacteria),所有水样微生物群落均以g-变形菌纲(Gammaproteobacteria)为主。温度、风化指数以及SO42-浓度显著影响罗汉肚岩壁和沉积物等固相样本中微生物的群落结构,其中USCg和假单胞菌属(Pseudomonas)与温度呈正相关,假诺卡氏菌属(Pseudonocardia)、土壤红色杆形菌(Solirubrobacter)和芽单胞菌属(Gemmatimonas)则与温度显著负相关。而滴水、水潭积水以及地下河河水等液相样本中微生物群落则与电导率(EC)和溶解氧(DO)的含量显著相关。细菌群落的共生网络具有明显的模块性,不同微生物类群间以正相关的合作关系为主,以共同抵抗洞穴中的极端条件。固相样本中群落构建确定性过程(48.75%)与随机性过程(51.25%)的贡献基本相等,但液相样本中微生物的群落构建则以随机过程占主导(64.76%)。[结论] 本研究结果首次揭示了洞穴微生物在不同相态样品中微生物群落的分布规律以及环境驱动机制、网络互作方式以及群落构建等生态学过程的差异,为深刻认识洞穴这一深地生物圈的微生物空间分布特征及微生物与环境之间以及不同微生物类群之间的相互作用提供了新的视角。

    Abstract:

    Caves are extreme environments with permanent darkness and limited nutrients, which serve as natural laboratories to study the subsurface deep biosphere. Although microbial communities have demonstrated strong niche specificity in different caves, the environmental driving mechanism of microbial communities and the ecological processes responsible for community assembly in different niches particularly those in different substrates e. g. solid versus liquid samples were poorly understood.[Objective] Here we aim to explore the environmental driving mechanisms and community assembly process of bacterial communities in different substrates e. g. solid versus liquid samples combined with physicochemical properties.[Methods] To this end, a karst cave, the Luohandu Cave in Guilin city, Guangxi province, locating in the typical karst region in southwestern China, was selected for a systematic investigation of microbial communities. Solid samples (weathered rocks and sediments) and liquid samples (dripping water, pool water and ground river water samples) were collected along the cave and subjected to high-throughput sequencing of 16S rRNA gene. Meanwhile, physicochemical properties of these samples were analyzed.[Results] Results showed strong niche specificity of microbial communities in the Luohandu cave. Actinobacteria and Acidobacteria dominated bacterial communities of weathered rocks and sediments, respectively. In contrast, water samples were dominated by γ-Proteobacteria. Redundancy analysis (RDA) between microbial communities and environmental variables demonstrated that temperature, weathering index and SO42- concentration significantly affect microbial communities in solid samples. USCγ and Pseudomonas positively associated with temperature, while Pseudonocardia, Solirubrobacter and Gemmatimonas negatively correlated with temperature. However, microbial communities in water samples were significantly controlled by electrical conductivity (EC) and dissolved oxygen (DO) as indicated by RDA. The co-occurrence network of bacterial communities was characterized by a good modularity with nodes from liquid samples locating in the same module, indicating a niche preference. Positive links dominated in the network, suggesting a corporative strategy among different microbial groups to survive in caves. Different ecological processes were found to be responsible for bacterial community assembly in different substrates. Deterministic process (48.75%) and stochastic process (51.25%) contributed almost equally to bacterial community assembly in solid samples, whereas stochastic process (64.76%) dominated the microbial community assembly in liquid samples. As for the individual ecological processes, homogenizing dispersal, undominated and dispersal limit in stochastic process contributed 40.42%, 10.46% and 3.13% to community assembly respectively; whereas homogenous selection and heterogeneous selection within deterministic process contributed 26.75% and 21.99%, respectively, in solid samples. In liquid samples, individual processes contributed to community assembly in order from high to low were undominated (28.57%), homogenous selection (25.71%), homogenizing dispersal (24.76%), dispersal limitation (10.48%), and heterogeneous selection (9.52%).[Conclusion] Our results for the first time revealed the different environmental driving mechanisms and different community assembly processes underlining microbial communities living in different substrates (solid versus liquid). This study offers a new window to understand the interactions among microbes and their environments, and interactions among different microbial groups in the subsurface biosphere in caves.

    参考文献
    相似文献
    引证文献
引用本文

杨梓琪,程晓钰,王红梅,曾智霖,刘晓燕,曹静,苏春田,黄奇波. 桂林罗汉肚洞细菌群落的环境驱动机制及群落构建过程[J]. 微生物学报, 2021, 61(12): 4118-4136

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-06
  • 最后修改日期:2021-09-07
  • 在线发布日期: 2021-12-17
文章二维码