梅毒螺旋体的营养物质转运及能量合成相关代谢机制研究
作者:
基金项目:

国家自然科学基金(81971980);湖南省出生缺陷协同防治重大专项(2019SK1010);广东省自然科学基金粤东西北创新人才联合培养项目(2018A030307065)


Metabolic mechanisms of nutrients transport and energy synthesis of Treponema pallidum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    梅毒螺旋体(Treponema pallidum,Tp)是严重危害人类健康的性传播疾病梅毒的病原体,目前仍难以实现体外人工培养。Tp在感染期间是如何获得足够的能量来完成其复杂的致病过程迄今不明。本文就Tp的葡萄糖转运、糖酵解途径、丙酮酸去路以及NAD+再生的研究进展做一综述,旨在为探索Tp尚未明了的生理代谢机能、突破Tp无法体外人工培养的瓶颈、进一步阐明Tp可能的致病机制和寻找新的临床治疗靶点提供依据。

    Abstract:

    Treponema pallidum is the pathogen of the sexually transmitted disease syphilis that seriously endangers the physical and mental health of humans, and it is still difficult to achieve artificial culture in vitro. A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. This article describes the metabolic mechanisms of Treponema pallidum, such as nutrients transport, glycolysis pathways, and metabolite detours, in order to arouse the attention of researchers and further explore the physiological and metabolic functions of Treponema pallidum that are not yet understood, and break the bottleneck of Treponema pallidum in vitro artificial culture. To clarify the possible pathogenic mechanism of Treponema pallidum, to find new clinical treatment targets to provide reference.

    参考文献
    [1] Smolak A, Rowley J, Nagelkerke N, Kassebaum NJ, Chico RM, Korenromp EL, Abu-Raddad LJ. Trends and predictors of syphilis prevalence in the general population:global pooled analyses of 1103 prevalence measures including 136 million syphilis tests. Clinical Infectious Diseases, 2017, 66(8):1184-1191.
    [2] Peeling RW, Mabey DCW. Focus:syphilis. Nature Reviews Microbiology, 2004, 2(6):448.
    [3] Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete:making a living as a stealth pathogen. Nature Reviews Microbiology, 2016, 14(12):744-759.
    [4] Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science, 1998, 281(5375):375-388.
    [5] Edmondson DG, Norris SJ. In vitro cultivation of the syphilis spirochete Treponema pallidum. Current Protocols, 2021, 1(2):e44.
    [6] Edmondson DG, DeLay BD, Kowis LE, Norris SJ. Parameters affecting continuous in vitro culture of Treponema pallidum strains. mBio, 2021, 12(1):e03536-e03520.
    [7] Edmondson DG, Hu B, Norris SJ. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. mBio, 2018, 9(3):e01153-e01118.
    [8] Luo X, Zhang XH, Gan L, Zhou CL, Zhao T, Zeng TB, Liu SQ, Xiao YJ, Yu J, Zhao FJ. The outer membrane protein Tp92 of Treponema pallidum induces human mononuclear cell death and IL-8 secretion. Journal of Cellular and Molecular Medicine, 2018, 22(12):6039-6054.
    [9] Luo X, Zhang XH, Zhao T, Zeng TB, Liu W, Deng MX, Zhao FJ. A preliminary study on the proinflammatory mechanisms of Treponema pallidum outer membrane protein Tp92 in human macrophages and HMEC-1 cells. Microbial Pathogenesis, 2017, 110:176-183.
    [10] Liu W, Deng MX, Zhang XH, Yin WG, Zhao T, Zeng TB, Liu SQ, Xiao YJ, Zhang L, Luo X, Zhao FJ. Performance of novel infection phase-dependent antigens in syphilis serodiagnosis and treatment efficacy determination. Clinica Chimica Acta, 2019, 488:13-19.
    [11] Duan JX, Zhao Y, Zhang XH, Jiang H, Xie BB, Zhao T, Zhao FJ. Research status and perspectives for pathogenic spirochete vaccines. Clinica Chimica Acta, 2020, 507:117-124.
    [12] Zhao FJ, Liu SQ, Zhang XH, Yu J, Zeng TB, Gu WM, Cao XY, Chen X, Wu YM. CpG adjuvant enhances the mucosal immunogenicity and efficacy of a Treponema pallidum DNA vaccine in rabbits. Human Vaccines & Immunotherapeutics, 2013, 9(4):753-760.
    [13] Zhao FJ, Zhang XH, Liu SQ, Gu WM, Yu J, Zeng TB, Zhang YJ, Chen X, Wu YM. Treponema pallidum Gpd DNA vaccine adjuvanted with IL-2 and coated by chitosan nanoparticles attenuates syphilitic lesion development in the rabbit model. Science China-Life Sciences, 2013, 56(2):174-180.
    [14] Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD. Bipartite topology of Treponema pallidum repeat proteins C/D and I. Journal of Biological Chemistry, 2015, 290(19):12313-12331.
    [15] Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, Cruz AR, Salazar JC, Radolf JD. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. Journal of Bacteriology, 2012, 194(9):2321-2333.
    [16] Liu H, Cheng M, Zhao SS, Lin CY, Song JZ, Yang Q. ATP-binding cassette transporter regulates N, N'-diacetylchitobiose transportation and chitinase production in Trichoderma asperellum T4. International Journal of Molecular Sciences, 2019, 20(10):2412.
    [17] Roberson RS, Ronimus RS, Gephard S, Morgan HW. Biochemical characterization of an active pyrophosphate-dependent phosphofructokinase from Treponema pallidum. FEMS Microbiology Letters, 2001, 194(2):257-260.
    [18] Mertens E. ATP versus pyrophosphate:glycolysis revisited in parasitic protists. Parasitology Today, 1993, 9(4):122-126.
    [19] Deka RK, Neil L, Hagman KE, Machius M, Tomchick DR, Brautigam CA, Norgard MV. Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an l-methionine-binding protein. Journal of Biological Chemistry, 2004, 279(53):55644-55650.
    [20] Deka RK, Goldberg MS, Hagman KE, Norgard MV. The Tp38(TpMglB-2) lipoprotein binds glucose in a manner consistent with receptor function in Treponema pallidum. Journal of Bacteriology, 2004, 186(8):2303-2308.
    [21] Brautigam CA, Deka RK, Liu WZ, Norgard MV. The Tp0684(MglB-2) lipoprotein of Treponema pallidum:a glucose-binding protein with divergent topology. PLoS One, 2016, 11(8):e0161022.
    [22] Brautigam CA, Deka RK, Liu WZ, Norgard MV. Crystal stuctures of MglB-2(TP0684), a topologically variant d-glucose-binding protein from Treponema pallidum, reveal a ligand-induced conformational change. Protein Science, 2018, 27(4):880-885.
    [23] Buyuktimkin B, Zafar H, Saier MH Jr. Comparative genomics of the transportome of ten Treponema species. Microbial Pathogenesis, 2019, 132:87-99.
    [24] Wilson DF, Matschinsky FM. Metabolic homeostasis in life as we know it:its origin and thermodynamic basis. Frontiers in Physiology, 2021, 12:658997.
    [25] Gonzalez CF, Stonestrom AJ, Lorca GL, Saier MH Jr. Biochemical characterization of phosphoryl transfer involving HPr of the phosphoenolpyruvate-dependent phosphotransferase system in Treponema denticola, an organism that lacks PTS permeases. Biochemistry, 2005, 44(2):598-608.
    [26] Schwan TG, Battisti JM, Porcella SF, Raffel SJ, Schrumpf ME, Fischer ER, Carroll JA, Stewart PE, Rosa P, Somerville GA. Glycerol-3-phosphate acquisition in spirochetes:distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. Journal of Bacteriology, 2003, 185(4):1346-1356.
    [27] Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences:CMLS, 2014, 71(14):2577-2604.
    [28] Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. Evidence for posttranslational protein flavinylation in the syphilis spirochete Treponema pallidum:structural and biochemical insights from the catalytic core of a periplasmic flavin-trafficking protein. mBio, 2015, 6(3):e00519-e00515.
    [29] Mayer F, Müller V. Adaptations of anaerobic Archaea to life under extreme energy limitation. FEMS Microbiology Reviews, 2014, 38(3):449-472.
    [30] Deka RK, Brautigam CA, Biddy BA, Liu WZ, Norgard MV. Evidence for an ABC-type riboflavin transporter system in pathogenic spirochetes. mBio, 2013, 4(1):e00615-e00612.
    [31] Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV. The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. Journal of Biological Chemistry, 2013, 288(16):11106-11121.
    [32] Saier MH Jr, Paulsen IT. Whole genome analyses of transporters in spirochetes:borrelia burgdorferi and Treponema pallidum. Journal of Molecular Microbiology and Biotechnology, 2000, 2(4):393-399.
    [33] Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and biochemical characterization of TP0037, a d-lactate dehydrogenase, supports an acetogenic energy conservation pathway in Treponema pallidum. mBio, 2020, 11(5):e02249-e02220.
    [34] McGill MA, Edmondson DG, Carroll JA, Cook RG, Orkiszewski RS, Norris SJ. Characterization and serologic analysis of the Treponema pallidum proteome. Infection and Immunity, 2010, 78(6):2631-2643.
    [35] Mitchell JG, Kogure K. Bacterial motility:links to the environment and a driving force for microbial physics. FEMS Microbiology Ecology, 2006, 55(1):3-16.
    [36] Radolf JD, Kumar S. The Treponema pallidum outer membrane. Current Topics in Microbiology and Immunology. Cham:Springer International Publishing, 2017:1-38.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江晗,谢碧波,赵思思,尹卫国,赵飞骏. 梅毒螺旋体的营养物质转运及能量合成相关代谢机制研究[J]. 微生物学报, 2022, 62(1): 57-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-24
  • 最后修改日期:2021-06-28
  • 在线发布日期: 2022-01-06
文章二维码