典型岩溶槽谷区氨氧化微生物丰度对隧道建设的响应——以中梁山为例
作者:
基金项目:

国家重点研发计划(2016YFC0502306);广西岩溶动力学重大科技创新基地开放课题(KDL&Guangxi 202007)


Responses of the ammonia-oxidizing microorganisms' abundance to tunnel evacuation in karst trough volley: a case study in Zhongliang Mountain, Chongqing, China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    氨氧化微生物介导土壤中铵态氮的氧化,是土壤硝化作用的第一步。【目的】在大型隧道工程影响的岩溶区,了解氨氧化微生物对土壤含水率和营养环境变化的响应对于研究隧道建设引起的生态环境改变和氮循环过程变化都有十分重要的意义。【方法】本研究以重庆市北碚区中梁山龙凤槽谷为例,对比受隧道影响的龙凤槽谷和不受隧道影响的龙车槽谷中4种土地利用方式(荒草地、竹林地、混交林以及菜园地)下的土壤中,3种氨氧化微生物(氨氧化细菌AOB、氨氧化古菌AOA、亚硝酸盐氧化细菌CMX)的丰度变化,结合土壤含水量、pH以及土壤营养元素等的变化,分析隧道建设引起的可培养氨氧化微生物数量变化及其过程机理。【结果】结果发现:①由于隧道开挖揭露了地下含水层,导致地下水位下降、土壤含水率降低、pH值升高、硝态氮含量增加、隧道影响区AOA、AOB和CMX丰度显著低于非隧道影响区,后者数量分别是前者的4.8、4.4和3.9倍;②受岩溶区碱性土壤环境和地下水以及可溶物极易漏失的影响,铵态氮等底物浓度并不是氨氧化细菌的主要影响因素,AOA丰度与土壤含水率和土壤酸碱缓冲性能呈正相关(P<0.01),CMX和AOB丰度都与土壤硝态氮含量呈极其显著的负相关(P<0.05),AOB丰度还与土壤的pH值呈负相关(P<0.05)。【结论】本研究揭示了岩溶区土壤理化性质中的含水率和pH是影响3种氨氧化微生物丰度的主要因子,隧道建设引起的地下水漏失和土壤有效水分降低是引起氨氧化微生物含量下降的主要原因,一定程度上改变了隧道建设影响区的硝化过程,但影响程度和更多微生物参与的氮循环过程改变还需要进一步详细的研究。

    Abstract:

    Ammonia oxidizing microorganisms mediate the oxidation of ammonium nitrogen in the soil, which is the first step of nitrification.[Objective] In the karst areas affected by large tunnel projects, understanding the response of ammonia oxidizing microorganisms to changes in soil moisture and nutrient condition has great significance for researching the changes of the ecological environment and the nitrogen cycle process caused by tunnel construction.[Methods] This study took four land uses (Grass land; bamboo land; mixed forest; vegetable land) of Longfeng trough valley, which is tunnel-affected-area and the Longche trough valley, which is non-tunnel-affected-area in Zhongliang Mountain, Beibei, Chongqing as an example, comparing the abundance of three ammonia oxidizing microorganisms (Ammonia oxidizing bacteria AOB, ammonia oxidizing archaea AOA, nitrite oxidizing bacteria CMX) and combining with the changes of soil water content, pH, and soil nutrient elements, to analyze the changes of ammonia oxidizing microorganisms caused by tunnel construction and its process mechanism.[Results] The results shows:① As the tunnel excavation exposed the underground aquifer, the level of groundwater decreased, the soil moisture content decreased, the pH and the nitrate nitrogen increased. The abundances of AOA, AOB and CMX of the tunnel-affected-area were significantly lower than the non-tunnel-affected zone, the abundances of the latter is 4.8, 4.4 and 3.9 times of the former respectively; ② Affected by the alkaline environment in soil and groundwater of karst area, as well as the vulnerability to leaking of solubles extremely easily, the concentration of substrates such as ammonium nitrogen is not the main influencing factors of ammonia oxidation microorganisms, the abundance of AOA is positively correlated with soil moisture content and soil buffering capacity (P<0.01), the abundances of CMX and AOB are both negatively correlated with soil nitrate nitrogen content (P<0.05), AOB abundance is also negatively correlated with soil pH (P<0.05).[Conclusion] This study reveals that soil physical and chemical properties like the soil moisture content and pH in karst areas are the main factors affecting the abundance of three ammonia oxidizing microorganisms. The leakage of groundwater and the decrease of soil effective moisture caused by tunnel construction are responsible for the decrease of ammonia oxidizing microorganisms abundances, which also change the nitrification process in tunnel-affected-area to some extent. However, the degree of influence and the changes of nitrogen cycle which more microorganisms involve in need to be further studied in detail.

    参考文献
    [1] Prosser JI. Autotrophic nitrification in bacteria. Advances in Microbial Physiology, 1990, 30:125-181.
    [2] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1):98-108.He JZ, Zhang LM. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1):98-108. (in Chinese)
    [3] Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Bürgmann H, Ingram LJ, Hamer U, Siljanen HMP, Peltoniemi K, Potthast K, Bañeras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao YP, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindström ES, Basiliko N, Nemergut DR. Microbes as engines of ecosystem function:when does community structure enhance predictions of ecosystem processes? Frontiers in Microbiology, 2016, 7:214.
    [4] 王正雄, 蒋勇军, 张远嘱, 段世辉, 刘九缠, 曾泽, 曾思博. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析. 地理学报, 2019, 74(5):1025-1039.Wang ZX, Jiang YJ, Zhang YZ, Duan SH, Liu JC, Zeng Z, Zeng SB. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors. Acta Geographica Sinica, 2019, 74(5):1025-1039. (in Chinese)
    [5] 曹建华. 受地质条件制约的中国西南岩溶生态系统. 北京:地质出版社, 2005.
    [6] 王家楠, 蒋勇军, 贺秋芳, 范佳鑫, 何瑞亮, 吴超. 中梁山岩溶槽谷区荒草地土壤微生物群落对隧道建设的响应. 生态学报, 2019, 39(16):6136-6145.Wang JN, Jiang YJ, He QF, Fan JX, He RL, Wu C. Response of soil microbial community in grassland to tunnel construction in the karst trough valley, Zhongliang Mountain, Chongqing. Acta Ecologica Sinica, 2019, 39(16):6136-6145. (in Chinese)
    [7] Vlaeminck SE, Hay AG, Maignien L, Verstraete W. In quest of the nitrogen oxidizing prokaryotes of the early Earth. Environmental Microbiology, 2011, 13(2):283-295.
    [8] Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528(7583):504-509.
    [9] Van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lücker S. Complete nitrification by a single microorganism. Nature, 2015, 528(7583):555-559.
    [10] Chu HY, Fujii T, Morimoto S, Lin XG, Yagi K. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. Soil Biology and Biochemistry, 2008, 40(7):1960-1963.
    [11] Di HJ, Cameron KC, Shen JP, Winefield CS, O'Callaghan M, Bowatte S, He JZ. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2(9):621-624.
    [12] Yao HY, Gao YM, Nicol GW, Campbell CD, Prosser JI, Zhang LM, Han WY, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology, 2011, 77(13):4618-4625.
    [13] Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 2008, 10(11):2966-2978.
    [14] 周雪, 黄蓉, 宋歌, 潘贤章, 贾仲君. 风干土壤中氨氧化微生物的恢复. 微生物学报, 2014, 54(11):1311-1322.Zhou X, Huang R, Song G, Pan XZ, Jia ZJ. Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting. Acta Microbiologica Sinica, 2014, 54(11):1311-1322. (in Chinese)
    [15] 王梅, 王智慧, 石孝均, 蒋先军. 长期不同施肥量对全程氨氧化细菌丰度的影响. 环境科学, 2018, 39(10):4727-4734.Wang M, Wang ZH, Shi XJ, Jiang XJ. Long-term fertilization effects on the abundance of complete ammonia oxidizing bacteria (comammox Nitrospira) in a neutral paddy soil. Environmental Science, 2018, 39(10):4727-4734. (in Chinese)
    [16] Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442(7104):806-809.
    [17] He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 2007, 9(12):3152.
    [18] Vincenzi V, Gargini A, Goldscheider N. Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeology Journal, 2009, 17(1):135-150.
    [19] Séneca J, Pjevac P, Canarini A, Herbold CW, Zioutis C, Dietrich M, Simon E, Prommer J, Bahn M, Pötsch EM, Wagner M, Wanek W, Richter A. Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought. The ISME Journal, 2020, 14(12):3038-3053.
    [20] 李强, 靳振江, 李忠义, 罗堃, 唐志琴, 黄静云, 陆文体. 岩溶地貌部位对土壤微生物丰度与酶活性的影响. 水土保持通报, 2014, 34(3):50-54.Li Q, Jin ZJ, Li ZY, Luo K, Tang ZQ, Huang JY, Lu WT. Effect of karst physiognomy on soil microbial abundance and enzyme activities. Bulletin of Soil and Water Conservation, 2014, 34(3):50-54. (in Chinese)
    [21] 侯雪燕. 土壤pH对硝化作用和氨氧化微生物群落结构的影响. 西南大学学位论文, 2014.
    [22] 罗鉴银, 傅瓦利. 岩溶地区开凿隧道对地下水循环系统的破坏——以重庆市中梁山为例. 西南农业大学学报:自然科学版, 2005, 27(4):432-435.Luo JY, Fu WL. Destruction caused by tunneling works to the circulatory system of underground water in karst areas-a case study of the Zhongliang mountains in Chongqing. Journal of Southwest Agricultural University, 2005, 27(4):432-435. (in Chinese)
    [23] 高程. 第三系软弱围岩地下水环境效应研究. 西南交通大学学位论文, 2013.
    [24] Zheng W, Wang XL, Tang Y, Liu H, Wang M, Zhang LJ. Use of tree rings as indicator for groundwater level drawdown caused by tunnel excavation in Zhongliang mountains, Chongqing, Southwest China. Environmental Earth Sciences, 2017, 76(15):1-14.
    [25] 吕玉香, 蒋勇军, 王正雄, 胡伟. 西南岩溶槽谷区隧道建设的水文生态环境效应研究进展. 生态学报, 2020, 40(6):1851-1864.Lü YX, Jiang YJ, Wang ZX, Hu W. Review on the hydrology and the ecological and environmental effects of tunnel construction in the karst valley of Southwest China. Acta Ecologica Sinica, 2020, 40(6):1851-1864. (in Chinese)
    [26] 张远瞩, 蒋勇军, 李勇, 王正雄, 段世辉, 吴韦, 彭学义, 王冬. 隧道工程对喀斯特槽谷区坡面产流及土壤侵蚀的影响. 生态学报, 2019, 39(16):6126-6135.Zhang YZ, Jiang YJ, Li Y, Wang ZX, Duan SH, Wu W, Peng XY, Wang D. Effects of tunnel excavation on slope runoff and soil erosion in a karst trough valley. Acta Ecologica Sinica, 2019, 39(16):6126-6135. (in Chinese)
    [27] 吴超, 蒋勇军, 沈立成, 刘九缠, 何瑞亮. 喀斯特槽谷典型植物水分利用效率对隧道建设的响应. 生态学报, 2020, 40(12):4032-4040.Wu C, Jiang YJ, Shen LC, Liu JC, He RL. Response of water use efficiency of typical plants to tunnel construction in karst trough valley. Acta Ecologica Sinica, 2020, 40(12):4032-4040. (in Chinese)
    [28] Yoo C. Interaction between tunneling and groundwater-numerical investigation using three dimensional stress-pore pressure coupled analysis. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2):240-250.
    [29] Zhao Y, Li PF, Tian SM. Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(6):468-477.
    [30] 鲍士旦. 土壤农化分析. 第3版. 北京:中国农业出版社, 2000.
    [31] 张永春, 汪吉东, 沈明星, 沈其荣, 许仙菊, 宁运旺. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010, 47(3):465-472.Zhang YC, Wang JD, Shen MX, Shen QR, Xu XJ, Ning YW. Effects of long-term fertilization on soil acidification in Taihu lake region, China. Acta Pedologica Sinica, 2010, 47(3):465-472. (in Chinese)
    [32] 胡君利, 林先贵, 褚海燕, 尹睿, 张华勇, 苑学霞, 朱建国. 土壤氨氧化细菌的分离方法研究. 土壤, 2005, 37(5):154-156.Hu JL, Lin XG, Chu HY, Yin R, Zhang HY, Yuan XX, Zhu JG. Isolation of soil ammonia-oxidizing bacteria. Soils, 2005, 37(5):154-156. (in Chinese)
    [33] Ushiki N, Jinno M, Fujitani H, Suenaga T, Terada A, Tsuneda S. Nitrite oxidation kinetics of two Nitrospira strains:the quest for competition and ecological niche differentiation. Journal of Bioscience and Bioengineering, 2017, 123(5):581-589.
    [34] Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC, Sinninghe Damsté JS, Kim GJ, Madsen EL, Rhee SK. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Applied and Environmental Microbiology, 2011, 77(24):8635-8647.
    [35] 朱鹤健, 陈健飞, 陈松林. 土壤地理学. 第2版. 北京:高等教育出版社, 2010.
    [36] Pratscher J, Dumont MG, Conrad R. Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10):4170-4175.
    [37] Jia ZJ, Conrad R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11(7):1658-1671.
    [38] 胡璐, 李心清, 黄代宽, 程建中. 中国北方-蒙古干旱半干旱区土壤铵态氮的分布及其环境控制因素. 地球化学, 2008, 37(6):572-580.Hu L, Li XQ, Huang DK, Cheng JZ. Ammonium nitrogen in surface soil of arid and semiarid Central East Asia. Geochimica, 2008, 37(6):572-580. (in Chinese)
    [39] 袁巧霞, 朱端卫, 武雅娟. 温度、水分和施氮量对温室土壤pH及电导率的耦合作用. 应用生态学报, 2009, 20(5):1112-1117.Yuan QX, Zhu DW, Wu YJ. Coupling effects of temperature, moisture, and nitrogen application on greenhouse soil pH and EC. Chinese Journal of Applied Ecology, 2009, 20(5):1112-1117. (in Chinese)
    [40] Ulrich B. Natural and anthropogenic components of soil acidification. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1986, 149(6):702-717.
    [41] Bedrna Z. Resistibility of landscape to acidification. kologia-Bratislava, 1994, 13(1):77-86.
    [42] Weaver AR, Kissel DE, Chen F, West LT, Adkins W, Rickman D, Luvall JC. Mapping soil pH buffering capacity of selected fields in the coastal plain. Soil Science Society of America Journal, 2004, 68(2):662-668.
    [43] Shen XY, Zhang LM, Shen JP, Li LH, Yuan CL, He JZ. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11(7):1243-1252.
    [44] 黄平, 张佳宝, 朱安宁, 张丛志. 黄淮海平原典型潮土的酸碱缓冲性能. 中国农业科学, 2009, 42(7):2392-2396.Huang P, Zhang JB, Zhu AN, Zhang CZ. Acid and alkaline buffering capacity of typical fluvor-aquic soil in Huang-huai-hai plain. Scientia Agricultura Sinica, 2009, 42(7):2392-2396. (in Chinese)
    [45] De Boer W, Kowalchuk GA. Nitrification in acid soils:micro-organisms and mechanisms. Soil Biology and Biochemistry, 2001, 33(7/8):853-866.
    [46] 陈效民, 邓建才, 柯用春, 张佳宝, 朱安宁. 硝态氮垂直运移过程中的影响因素研究. 水土保持学报, 2003, 17(2):12-15.Chen XM, Deng JC, Ke YC, Zhang JB, Zhu AN. Study on influence factors in process of nitrate vertical transport. Journal of Soil Water Conservation, 2003, 17(2):12-15. (in Chinese)
    [47] 贺秋芳. 青木关地下河岩溶系统中的氮循环及其相关微生物作用与示踪研究. 西南大学学位论文, 2009.
    [48] 汪智军, 杨平恒, 旷颖仑, 贺秋芳, 袁文昊, 袁道先. 基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析. 环境科学, 2009, 30(12):3548-3554.Wang ZJ, Yang PH, Kuang YL, He QF, Yuan WH, Yuan DX. Temporal and spatial variations of the nitrate-nitrogen sources in an underground river using 15N isotope technique. Environmental Science, 2009, 30(12):3548-3554. (in Chinese)
    [49] 黄绍敏, 皇甫湘荣, 宝德俊, 张鸿程, 孙克刚. 土壤中硝态氮含量的影响因素研究. 农业环境保护, 2001, 20(5):351-354.Huang SM, Huangfu XR, Bao DJ, Zhang HC, Sun KG. Factors affecting content of nitrate-nitrogen in soil. Agro-Environmental Protection, 2001, 20(5):351-354. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈畅,贾亚男,贺秋芳,蒋勇军,叶凯,王业荣. 典型岩溶槽谷区氨氧化微生物丰度对隧道建设的响应——以中梁山为例[J]. 微生物学报, 2022, 62(1): 119-130

复制
分享
文章指标
  • 点击次数:253
  • 下载次数: 1147
  • HTML阅读次数: 1282
  • 引用次数: 0
历史
  • 收稿日期:2021-03-09
  • 最后修改日期:2021-05-24
  • 在线发布日期: 2022-01-06
文章二维码