灰飞虱核心共生菌的鉴定
作者:
基金项目:

国家重点研发计划(2019YFC1200503)


Identification of the core symbiotic bacteria of Laodelphax striatellus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    媒介昆虫的核心共生菌能被用作基因工程菌发挥抗病毒功能。灰飞虱是一种重要的农业害虫,其传播的水稻条纹病毒造成水稻的大面积减产甚至绝收。【目的】本研究对不同稻区及温室饲养的灰飞虱进行菌群组成分析并初步鉴定灰飞虱的核心共生菌。【方法】通过16S rDNA介导的二代测序技术,分析了2018-2020年间采集自云南昆明、河南开封、河南范县稻区以及温室的灰飞虱的菌群组成。【结果】所有37个灰飞虱测序样本均携带细胞内和细胞外共生菌,细胞内生菌沃尔巴克氏体属(Wolbachia)为灰飞虱最稳定的核心共生菌,在所有样本中存在,平均相对丰度51.96%,其代表性序列OTU45占据该属85条OTU序列总数的96.55%。除Wolbachia之外,其他常见核心菌均为胞外菌,其中4种平均相对丰度最高的常见核心菌分别为不动杆菌属、泛菌属、肠杆菌属和假单胞菌属,在10种常见核心菌中平均占比0.25%-2.97%。不同稻区的灰飞虱各有优势菌,昆明为立克次体属,范县为杀雄菌属和Cardinium,开封为醋杆菌属、泛菌属和Sulcia。这些田间的优势菌包括多种细胞内生菌。稻田灰飞虱在温室进行24 h蔗糖饲喂后,Wolbachia相对丰度显著升高,菌群结构与温室灰飞虱更加接近;继代培养后,除Wolbachia之外的细胞内生菌丢失或以低丰度存在于部分样本中。【结论】本研究初步阐明灰飞虱的菌群组成并鉴定了常见核心菌及3个中国稻区的优势共生菌,为通过核心菌进行抗病毒的研究提供了可选择的共生工程菌靶标。

    Abstract:

    The core symbiotic bacteria of insect vectors have the potential to be used as genetically engineered bacteria to control arboviruses. Laodelphax striatellus is an important agricultural pest and also the transmission vector of rice stripe virus, the causative agent of rice stripe disease that occurred with dramatic yield reduction or even no harvest.[Objective] In this study, the bacterial communities of L. striatellus were sequenced through 16S rDNA next-generation sequencing methods, and the core symbiotic bacteria were identified.[Methods] From 2018 to 2020, L. striatellus have been collected from the rice fields in Kunming of Yunnan Province, and in Kaifeng and Fanxian of Henan province, as well as in the greenhouse, in which microbiomes were sequenced and analyzed.[Results] All 37 L. striatellus sequencing samples carry both intracellular and extracellular bacteria. In the genus level, the intracellular bacteria Wolbachia exhibited the highest average relative abundance of 51.96%. Its representative OTU (OTU45) accounts for 96.55% of the total number of 85 OTUs and exists in all sequenced insect samples. Except for Wolbachia, all the other common core bacteria were extracellular, in which the four core genera with high abundances were Acinetobacter, Pantoea, Enterobacter and Pseudomonas, with average relative abundances of 0.25%-2.97% in all ten common core genera. There are dominant bacteria in insect samples from different rice fields. High-abundant Rickettsia were found in Kunming samples, both Arsonophonus and Cardinium were identified in Fanxian samples, and Acetobacter, Sulcia and Pantoea were found in Kaifeng samples. These rice-field dominant bacteria include a variety of intracellular bacteria. When the rice-field insects were fed with sucrose for 24 h in the greenhouse, the relative abundance of Wolbachia increased significantly and the microbial composition became closer to that of the greenhouse. Within the offsprings of these rice-field insects, the intracellular bacteria, except for Wolbachia, lost or existed in a few samples with low level.[Conclusion] This study preliminarily clarified the symbiotic bacterial composition of L. striatellus, identified common core bacteria and identified dominant symbiotic bacteria in the three Chinese rice areas, providing engineered bacteria for antiviral research through insect vector's core bacteria.

    参考文献
    [1] Wang SB, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science, 2017, 357(6358):1399-1402.
    [2] Werren JH, Baldo L, Clark ME. Wolbachia:master manipulators of invertebrate biology. Nature Reviews Microbiology, 2008, 6(10):741-751.
    [3] Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA. The w Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 2011, 476(7361):450-453.
    [4] Gong JT, Li YJ, Li TP, Liang YK, Hu LC, Zhang DJ, Zhou CY, Yang C, Zhang X, Zha SS, Duan XZ, Baton LA, Hong XY, Hoffmann AA, Xi ZY. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Current Biology, 2020, 30(24):4837-4845.e5.
    [5] Risely A. Applying the core microbiome to understand host-microbe systems. Journal of Animal Ecology, 2020, 89(7):1549-1558.
    [6] Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou WG, Rousset F, O'Neill SL. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology, 1999, 29(2):153-160.
    [7] Hurst GD, Frost CL. Reproductive parasitism:maternally inherited symbionts in a biparental world. Cold Spring Harbor Perspectives in Biology, 2015, 7(5):a017699.
    [8] Yin CH, Sun P, Yu X, Wang PH, Cheng G. Roles of symbiotic microorganisms in arboviral infection of arthropod vectors. Trends in Parasitology, 2020, 36(7):607-615.
    [9] McCutcheon JP. The bacterial essence of tiny symbiont genomes. Current Opinion in Microbiology, 2010, 13(1):73-78.
    [10] Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nature Microbiology, 2016, 1:15011.
    [11] Wu P, Yu X, Wang PH, Cheng G. Arbovirus lifecycle in mosquito:acquisition, propagation and transmission. Expert Reviews in Molecular Medicine, 2019, 21:e1.
    [12] Nault LR. Transmission biology, vector specificity and evolution of planthopper-transmitted plant viruses. Planthoppers. Boston, MA:Springer US, 1994:429-448.
    [13] Duan XZ, Sun JT, Wang LT, Shu XH, Guo Y, Keiichiro M, Zhu YX, Bing XL, Hoffmann AA, Hong XY. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome, 2020, 8(1):104.
    [14] Liu WW, Zhang XW, Wu N, Ren YD, Wang XF. High diversity and functional complementation of alimentary canal microbiota ensure small brown planthopper to adapt different biogeographic environments. Frontiers in Microbiology, 2019, 10:2953.
    [15] Bing XL, Zhao DS, Peng CW, Huang HJ, Hong XY. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera:Delphacidae) populations. Insect Science, 2020, 27(5):947-963.
    [16] Pan HB, Li MY, Wu W, Wang ZL, Yu XP. Host-plant induced shifts in microbial community structure in small brown planthopper, Laodelphax striatellus (Homoptera:Delphacidae). Journal of Economic Entomology, 2021, 114(2):937-946.
    [17] 张莉莉, 陈丽莹. 一种解析水稻叶际内生细菌菌群结构的方法.中国, 201710187212.9. 2020-06-23.
    [18] Li F, Li P, Hua HX, Hou ML, Wang FL. Diversity, tissue localization, and infection pattern of bacterial symbionts of the white-backed planthopper, Sogatella furcifera (Hemiptera:Delphacidae). Microbial Ecology, 2020, 79(3):720-730.
    [19] Shane JL, Grogan CL, Cwalina C, Lampe DJ. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nature Communications, 2018, 9:4127.
    [20] Panteleev DY, Goryacheva II, Andrianov BV, Reznik NL, Lazebny OE, Kulikov AM. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russian Journal of Genetics, 2007, 43(9):1066-1069.
    [21] Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology, 2008, 6(12):e2.
    [22] Martinez J, Bruner-Montero G, Arunkumar R, Smith SCL, Day JP, Longdon B, Jiggins FM. Virus evolution in Wolbachia- infected Drosophila. Proceedings of the Royal Society B:Biological Sciences, 2019, 286(1914):20192117.
    [23] Liu XD, Guo HF. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinion in Insect Science, 2019, 33:84-90.
    [24] Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. Proceedings Biological Sciences, 2020, 287(1933):20201184.
    [25] Kobiaka M, Michalik A, Walczak M, Junkiert U, Szklarzewicz T. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae:Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma, 2016, 253(3):903-912.
    [26] Konecka E, Olszanowski Z. A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari:Oribatida). Molecular Phylogenetics and Evolution, 2019, 131:64-71.
    [27] Kobiałka M, Michalik A, Szwedo J, Szklarzewicz T. Diversity of symbiotic microbiota in Deltocephalinae leafhoppers (Insecta, hemiptera, cicadellidae). Arthropod Structure & Development, 2018, 47(3):268-278.
    相似文献
    引证文献
引用本文

孙红波,姜军,陈丽莹,宋泽润,刘达,杨杰,霍岩,方荣祥,张莉莉. 灰飞虱核心共生菌的鉴定[J]. 微生物学报, 2022, 62(1): 160-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-16
  • 最后修改日期:2021-05-24
  • 在线发布日期: 2022-01-06
文章二维码