长期施磷对石灰性土壤中编码碱性磷酸酶基因的细菌群落的影响
作者:
基金项目:

国家自然科学基金(32002126);国家重点研发计划(2018YFD0200700,2017YFD0200206);国家玉米产业体系(CARS-02-15);中央高校基本科研业务费(XDJK2019C065)


Effects of long-term phosphorus application on phoD harboring bacterial community in calcareous soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】通过研究集约化玉米体系中长期不同供磷水平对土壤中编码碱性磷酸酶基因的细菌群落多样性、结构、组成和网络特征的影响及其与土壤有机磷形态之间的关系,为探究有机磷循环功能在微生物的群落特征及提高土壤中有机磷矿化和利用提供科学依据。【方法】本研究依托华北平原小麦玉米轮作体系石灰性土壤长期施磷的定位试验(始于2008年),试验处理包括6个供磷水平:0、12.5、25.0、50.0、100.0、200.0 kg P/hm2(分别表示为:P0、P12.5、P25、P50、P100和P200),采用核磁共振技术测定土壤中有机磷的分子形态,采用高通量测序技术分析编码碱性磷酸酶的phoD基因(alkaline phosphatase-encoding gene)的细菌群落,探究含phoD基因的细菌群落特征及其与土壤有机磷形态之间的关系。【结果】随着供磷水平的增加,土壤中磷酸单酯的含量无显著变化,磷酸二酯的含量显著增加;含phoD基因的细菌群落α-多样性整体呈先不变(P0-P50)后降低趋势(P50-P200),含phoD基因细菌的群落结构发生显著变化。优势类群中属水平的假单胞菌属(Pseudomona)和马赛菌属(Massilia)随供磷水平的增加显著降低,而壳聚糖酶产生菌属(Mitsuaria)和Kribbella随供磷水平的增加显著升高。其中,Mitsuaria与土壤中速效磷的浓度呈显著的正相关,同时与磷酸酶活性呈显著的负相关;Pseudomonas的相对丰度与土壤中总有机磷的浓度呈显著的负相关,溶杆菌属(Lysobacter)的相对丰度与土壤中总有机磷的浓度呈显著的正相关。网络分析中正相关连接线的比例在低磷条件下最高,P50处理次之,P100处理最低。其中在P0、P12.5、P25、P50处理中,特定的关键类群,如慢生根瘤菌属(Bradyrhizobium)、Stackebrandtia、伯克氏菌属(Burkholderia)、Lysobacter与有机磷(包括总有机磷、磷酸单酯和磷酸二酯)的浓度呈显著相关,而P100和P200处理下的关键类群与有机磷形态无显著相关。【结论】供磷水平通过显著影响土壤中pH、有机磷形态和数量等理化性质,进而影响含phoD基因细菌群落的α-多样性、群落结构、群落组成、网络特征及其关键类群的变化。

    Abstract:

    [Objective] This study was aimed to investigate the effects of long-term phosphorus (P) supply on the diversity, structure, composition and network characteristics of bacterial community encoding alkaline phosphatase gene and their relationship with the forms of soil organic P, so as to provide scientific basis for exploring the community characteristics of organic P cycling functional microorganisms and improving the mineralization and utilization of soil organic P.[Methods] Based on the long-term P application experiment in calcareous soil of wheat-maize rotation system in North China Plain (started in 2008), the experiment included six P levels:0, 12.5, 25, 50, 100, 200 kg P/hm2 (P0, P12.5, P25, P50, P100 and P200 respectively) and the molecular forms of organic P in soil were determined by nuclear magnetic resonance (NMR), high-throughput sequencing technology was used to analyze the bacterial community of phoD gene (encoding alkaline phosphatase), and explore the bacterial community characteristics of phoD gene and its relationship with the forms of organic P in soil.[Results] With the increase of P supply level, the concentration of phosphate monoester did not change significantly, but the concentration of phosphate diester increased significantly; the α-diversity of the phoD harboring bacterial community was first unchanged (P0 to P50) and then decreased (P50 to P200), and the community structure of phoD harboring bacteria changed significantly. The dominant taxa named Pseudomonas and Masslis at genus level decreased significantly, while Mitsuaria and Kribbella increased significantly with the increase of P supply level. Mitsuaria was positively correlated with the concentration of available P in soil, and negatively correlated with the activity of phosphatase. There was a significant negative correlation between the relative abundance of Pseudomonas and the concentration of total organic P in soil, and a significant positive correlation between the relative abundance of Lysobacter and the concentration of total organic P in soil. In the network analysis, the proportion of positive edges was the highest in P0 treatment, followed by P50 treatment, and the lowest in P100 treatment. In the treatments of P0, P12.5, P25 and P50, specific keystone taxa such as Bradyrhizobium, Stackbrandtia, Burkholderia, Bradyrhizobium and Lysobacter were significantly correlated with the concentration of organic P (including total organic P, phosphate monoester and phosphate diester), however, the keystone taxa under P100 and P200 treatments has no significant correlation with the forms of organic P.[Conclusion] The levels of P supply significantly affected the physicochemical properties of soil, such as pH, the forms and quantities of organic P, and then affected the changes of α-diversity, community structure, community composition, network characteristics and keystone taxa of phoD harboring bacterial community.

    参考文献
    [1] Stutter MI, Shand CA, George TS, Blackwell MSA, Bol R, MacKay RL, Richardson AE, Condron LM, Turner BL, Haygarth PM. Recovering phosphorus from soil:a root solution? Environmental Science & Technology, 2012, 46(4):1977-1978.
    [2] Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, Stutter M, Shand C, Lumsdon D, Cooper P, Wendler R, Brown L, Almeida DS, Wearing C, Zhang H, Haygarth PM. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils:a review. Plant and Soil, 2018, 427(1/2):5-16.
    [3] 沈善敏. 中国土壤肥力. 北京:中国农业出版社, 1998.Shen SM. Soil fertility in China. Beijing:Chinese Agriculture Press, 1998. (in Chinese)
    [4] Cade-Menun B, Liu CW. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013:a review of sample preparation and experimental parameters. Soil Science Society of America Journal, 2014, 78(1):19-37.
    [5] Cade-Menun BJ, Doody DG, Liu CW, Watson CJ. Long-term changes in grassland soil phosphorus with fertilizer application and withdrawal. Journal of Environmental Quality, 2017, 46(3):537-545.
    [6] van der Bom FJT, McLaren TI, Doolette AL, Magid J, Frossard E, Oberson A, Jensen LS. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma, 2019, 355:113909.
    [7] Gatiboni LC, Brunetto G, Rheinheimer DDS, Kaminski J, Pandolfo CM, Veiga M, Flores AFC, Lima MAS, Girotto E, Copetti ACC. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization. Revista Brasileira De Ciência Do Solo, 2013, 37(3):640-648.
    [8] McLaren TI, Smernik RJ, Simpson RJ, McLaughlin MJ, McBeath TM, Guppy CN, Richardson AE. The chemical nature of organic phosphorus that accumulates in fertilized soils of a temperate pasture as determined by solution 31P NMR spectroscopy. Journal of Plant Nutrition and Soil Science, 2017, 180(1):27-38.
    [9] Mullaney EJ, Ullah AHJ. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 2003, 312(1):179-184.
    [10] Lim BL, Yeung P, Cheng CW, Hill JE. Distribution and diversity of phytate-mineralizing bacteria. The ISME Journal, 2007, 1(4):321-330.
    [11] Ragot SA, Kertesz MA, Bünemann EK. phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology, 2015, 81(20):7281-7289.
    [12] Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Applied Soil Ecology, 2017, 111:48-56.
    [13] Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science and Plant Nutrition, 2008, 54(1):62-71.
    [14] Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O'Gara F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49(6):661-672.
    [15] Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JS, Ge TD. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biology and Biochemistry, 2019, 131:62-70.
    [16] Long XE, Yao HY, Huang Y, Wei WX, Zhu YG. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry, 2018, 118:103-114.
    [17] Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biology and Biochemistry, 2015, 88:137-147.
    [18] Luo GW, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo SW, Shen QR. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biology and Fertility of Soils, 2017, 53(4):375-388.
    [19] Di Gregorio. Land cover classification system, classification concepts and user manual. 3rd ed. FAO:Rome, Italy, 2016.
    [20] Olsen SR, Sommers LE, Page AL. Phosphrus. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properities. 2nd ed. Agronomy, No.9. ASA, SSSA, Madison, WI, 1982:403-430.
    [21] Saunders WMH, Williams EG. Observations on the determination of total organic phosphorus in soils. Journal of Soil Science, 1955, 6(2):254-267.
    [22] Cade-Menun BJ. Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples. Organic phosphorus in the environment. Wallingford:CABI, 2005:21-44.
    [23] Tabatabai MA. Soil Enzymes. In:Miller R, Keeney D, Methods of Soil Analysis. American Society for Agronomy. Madison, 1982.
    [24] Lagos LM, Acuña JJ, Maruyama F, Ogram A, de la Luz Mora M, Jorquera MA. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biology and Fertility of Soils, 2016, 52(7):1007-1019.
    [25] Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Computational Biology, 2012, 8(9):e1002687.
    [26] Banerjee S, Bora S, Thrall PH, Richardson AE. Soil C and N as causal factors of spatial variation in extracellular enzyme activity across grassland-woodland ecotones. Applied Soil Ecology, 2016, 105:1-8.
    [27] Hooper D, Coughlan J, Mullen MR. Structural equation modelling:guidelines for determining model fit. Electronic Journal of Business Research Methods, 2008, 6:141-146.
    [28] Grace JB. Structural equation modeling and natural systems. Cambridge:Cambridge University Press, 2006.
    [29] Condron LM, Turner BL, Cade-Menun BJ. Chemistry and愠湤????偩档潳猠灯桦漠牳畯獩?愠捯瑲楧癡慮瑩潣爠獰?捯潳湰瑨牯楲扵畳琮攠?瑧潲?汮敯杭慹挠祍?灮桯潧獲灡桰潨牳甮猠?慡癤慩楳汯慮戬椠汗楉琬礠?楓湁?慁杭牥楲捩畣污瑮甠牓慯汣?獥潴楹氠獯?愠?牧敲癯楮敯睭???楃?卯捰椠敓湣捩敥?潣晥?瑓桯散?呥潴瑹愠汯??湁癭楥牲潩湣浡攬渠瑡??椠??????????????????????扦爠?孭??嵩??愬渠朲‰???娸漷甭?圲報???桲放湛″堰塝??婥潮畧??儬??婥桮慧渠杇?圠???敮渠杘?夬??婯桵甠????奁畲?偵???桬敡湲?塭偹??卲潲楨汩?浡楬挠牦潵扮楧慡汬?捣潯浬灯潮獩楺瑡楴潩湯?愠湩摳??楯?灳桩潤???楢??朠敡湴攠?慰扴畩湭摡慬渠捏敬?慥牮攭?猠敬湥獶楥瑬楳瘠敦?瑲漠?灡桸潩獭灩桺潥牤甠獹?汥敬癤敳氠?楮渠?慮?汩潮湴来?瑳敩牶浥?睷桨敥慡瑴?浭慡楩空敥?捣牲潯灰?獩祮獧琠敳浹???業??爼潩渾瑆楩敥牬獤?楃湲??楳挠牒潥扳楥潡汲潣杨礼??椾??′日?祝??′??????????>[31] Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW. Using organic phosphorus to sustain pasture productivity:a perspective. Geoderma, 2014, 221/222:11-19.
    [32] Kuzyakov Y, Razavi BS. Rhizosphere size and shape:temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 2019, 135:343-360.
    [33] Chen XD, Jiang N, Chen ZH, Tian JH, Sun N, Xu MG, Chen LJ. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 2017, 119:197-204.
    [34] Liu J, Han CQ, Zhao YH, Yang JJ, Cade-Menun BJ, Hu YF, Li JM, Liu H, Sui P, Chen YQ, Ma YB. The chemical nature of soil phosphorus in response to long-term fertilization practices:implications for sustainable phosphorus management. Journal of Cleaner Production, 2020, 272:123093.
    [35] Faust K, Raes J. Microbial interactions:from networks to models. Nature Reviews Microbiology, 2012, 10(8):538-550.
    [36] Zhou H, Gao Y, Jia XH, Wang MM, Ding JJ, Cheng L, Bao F, Wu B. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biology and Biochemistry, 2020, 144:107782.
    [37] Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 2018, 16(9):567-576.
    [38] Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET. Core microbiomes for sustainable agroecosystems. Nature Plants, 2018, 4(5):247-257.
    [39] Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 2014, 5:219.
    [40] Zheng HP, Yang TJ, Bao YZ, He PP, Yang KM, Mei XL, Wei Z, Xu YC, Shen QR, Banerjee S. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biology and Biochemistry, 2021, 157:108230.
    [41] Ren Y, Xun W, Yan H, Ma A, Zhang R. Functional compensation dominates plant rhizosphere microbiota assembly. Soil Biology and Biochemistry. 2020, 150:107968.
    [42] Hu YJ, Veresoglou SD, Tedersoo L, Xu TL, Ge TD, Liu L, Chen YL, Hao ZP, Su YR, Rillig MC, Chen BD. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology and Biochemistry, 2019, 131:100-110.
    [43] Jiménez DJ, Korenblum E, Elsas JD. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Applied Microbiology and Biotechnology, 2014, 98(6):2789-2803.
    [44] Chen XD, Jiang N, Condron LM, Dunfield KE, Chen ZH, Wang JK, Chen LJ. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Science of the Total Environment, 2019, 669:1011-1018.
    [45] Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen QR, Zhang RF. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE, 2014, 9(1):e85301.
    [46] Zhou J, Guan DW, Zhou BK, Zhao BS, Ma MC, Qin J, Jiang X, Chen SF, Cao FM, Shen DL, Li J. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry, 2015, 90:42-51.
    [47] Zhu J, Li M, Whel
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郎明,李佳颖,苏卫华,邹温馨,刘于,陈新平. 长期施磷对石灰性土壤中编码碱性磷酸酶基因的细菌群落的影响[J]. 微生物学报, 2022, 62(1): 242-258

复制
分享
文章指标
  • 点击次数:430
  • 下载次数: 1387
  • HTML阅读次数: 1439
  • 引用次数: 0
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2021-05-26
  • 在线发布日期: 2022-01-06
文章二维码