放牧藏猪、舍饲藏猪与商品猪粪便真菌群落组成及其与饲粮纤维消化的相关性研究
作者:
基金项目:

西藏自治区自然科学基金(XZ202001ZR0024G);西藏农牧学院与西北农林科技大学联合基金(2452020043);西藏自治区重点研发计划(XZ202001ZY0039N)


Fungal community in the feces of grazing Tibetan pigs, captive Tibetan pigs, and commercial pigs and its interaction with dietary fiber digestion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究饲养在西藏高原的放牧藏猪、舍饲藏猪和商品猪(杜长大猪,DLY猪)粪便中真菌群落组成的差异性,获取与饲粮粗纤维消化相关的真菌群落。【方法】以饲养在西藏高原的5月龄放牧藏猪、舍饲藏猪和DLY猪为研究对象,采用消化试验测定放牧藏猪、舍饲藏猪和DLY猪对饲粮粗纤维的表观消化率。采集粪便样品利用单分子实时测序技术(SMRT),测定粪便真菌ITS基因全长序列,分析粪便真菌群落的结构和多样性,采用Pearson相关分析获取饲粮粗纤维表观消化率与真菌群落的相关性。【结果】在放牧藏猪、舍饲藏猪和DLY猪的粪便样品中共鉴定出了4个门、13个纲、23个目、39个科、55个属、58个种,放牧藏猪在各分类水平的分类单元数均显著高于舍饲藏猪与DLY猪(P<0.05)。子囊菌门(Ascomycota)和担子菌门(Basidiomycota)是优势菌门,在门水平下,放牧藏猪、舍饲藏猪和DLY猪间无显著差异(P ≥ 0.05),但在纲、目、科、属、种水平下,放牧藏猪多个真菌类群相对丰度显著高于舍饲藏猪与DLY猪(P<0.05)。放牧藏猪具有更高的菌群丰富度和独有分类操作单元(OTU)(P<0.05),通过主坐标分析发现放牧藏猪粪便真菌群落与舍饲藏猪和DLY猪之间差距明显。放牧藏猪对饲粮粗纤维的表观消化率显著高于舍饲藏猪与DLY猪(P<0.05),Pearson相关性分析表明,Phialemonium atrogriseumPhialemonium inflatumPodospora communis与饲粮粗纤维表观消化率呈显著正相关(P<0.05)。【结论】放牧藏猪具有较强的纤维消化能力,可以从其肠道内鉴定出更丰富的真菌类群并进行深入开发,有利于进一步研究藏猪耐粗饲等优良特性。

    Abstract:

    [Objective] This study aimed to investigate the differences in the structure of fungal community in the feces of grazing Tibetan pigs, captive Tibetan pigs, and commercial pigs[Duroc×Landrace×Yorkshire (DLY) pigs, aged 5 months] in the Tibet Plateau and to obtain the fungi associated with the digestion of dietary crude fiber.[Methods] The apparent digestibility of dietary crude fiber of grazing Tibetan pigs, captive Tibetan pigs, and DLY pigs was determined via digestion experiments. The full-length ITS region of fecal fungi was determined by single molecule real-time sequencing technology to analyze the structure and diversity of fungal community. The Pearson correlation analysis was performed between apparent digestibility of dietary crude fiber and fungal community.[Results] A total of 58 fungal species belonging to 4 phyla, 13 classes, 23 orders, 39 families, and 55 genera were identified. At each taxonomic level, the fungal taxa in the feces of grazing Tibetan pigs were more than those of either captive Tibetan pigs or DLY pigs (P<0.05). Ascomycota and Basidiomycota were the dominant phyla, and the fungal abundance at the phylum level had no significant difference among the

    grazing Tibetan pigs, captive Tibetan pigs, and DLY pigs (P ≥ 0.05). At the levels of class, order,

    family, genus, and species, the fungal abundance of grazing Tibetan pigs was significantly higher than that of either captive Tibetan pigs or DLY pigs (P<0.05). The grazing Tibetan pigs had the most diverse fungi with unique operational taxonomic units (P<0.05). The principal coordinate analysis revealed that grazing Tibetan pigs had different fecal fungi compared with captive Tibetan pigs and DLY pigs (P<0.05). The grazing Tibetan pigs had higher apparent digestibility of dietary crude fiber than captive Tibetan pigs and DLY pigs (P<0.05). Pearson correlation analysis showed that Phialemonium atrogriseum, Phialemonium inflatum, and Podospora communis had a positive correlation with the apparent digestibility of dietary crude fiber (P<0.05).[Conclusion] The grazing Tibetan pigs had stronger fiber digestibility than the captive Tibetan pigs and DLY pigs. In the future, we could identify more fungal groups from their gut. This information would be helpful in studying the excellent characteristics of Tibetan pigs, such as their tolerance to roughage.

    参考文献
    [1] Yang SL, Zhang H, Mao HM, Yan DW, Lu SX, Lian LS, Zhao GY, Yan YL, Deng WD, Shi XW, Han SX, Li S, Wang XJ, Gou X. The local origin of the Tibetan pig and additional insights into the origin of Asian pigs. PLoS ONE, 2011, 6(12):e28215.
    [2] Shang ZD, Tan ZK, Liu SZ, Li JK, Qiang-Ba YZ, Shang P, Wang HH. Characterization of bacterial microbiota diversity in Tibetan pigs fed with green forage in Linzhi of the Tibet autonomous region. Journal of Biological Regulators and Homeostatic Agents, 2019, 33(2):447-455.
    [3] Meng F, Ma L, Ji S, Yang W, Cao B. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass. Letters in Applied Microbiology, 2014, 59(3):306-312.
    [4] Diao H, Xiao Y, Yan HL, Yu B, He J, Zheng P, Yu J, Mao XB, Chen DW. Effects of early transplantation of the faecal microbiota from Tibetan pigs on the gut development of DSS-challenged piglets. BioMed Research International, 2021, 2021:1-11.
    [5] 刘杏忠. 真菌学研究的进展及机遇——真菌学国家重点实验室专刊序言. 菌物学报, 2015, 34(5):795-798.Liu XZ. Advances and challenges in fungal researches-preface to the special issue for the state key laboratory of mycology. Mycosystema, 2015, 34(5):795-798. (in Chinese)
    [6] 孔庆辉, 刘瑶, 索朗斯珠, 刘锁珠, 谭占坤, 商鹏, 商振达. 藏仔猪粪便真菌菌群多样性分析. 菌物学报, 2020, 39(7):1241-1249.Kong QH, Liu Y, Suo L, Liu SZ, Tan ZK, Shang P, Shang ZD. Fungal diversity in Tibetan piglet fecal samples. Mycosystema, 2020, 39(7):1241-1249. (in Chinese)
    [7] Li JY, Chen DW, Yu B, He J, Huang ZQ, Mao XB, Zheng P, Yu J, Luo JQ, Tian G, Luo YH. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs. Microbial Biotechnology, 2020, 13(2):509-521.
    [8] 谭占坤, 商振达, 刘锁珠, 商鹏, 强巴央宗. 西藏高原藏猪盲肠微生物群落结构与多样性的研究. 畜牧兽医学报, 2020, 51(9):2147-2155.Tan ZK, Shang ZD, Liu SZ, Shang P, Qiangba YZ. Study on the cecal microbial community structure and diversity of Tibetan pigs in Tibetan Plateau. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(9):2147-2155. (in Chinese)
    [9] Jin H, Mo LX, Pan L, Hou Q, Li CJ, Darima I, Yu J. Using PacBio sequencing to investigate the bacterial microbiota of traditional Buryatian cottage cheese and comparison with Italian and Kazakhstan artisanal cheeses. Journal of Dairy Science, 2018, 101(8):6885-6896.
    [10] O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 2005, 71(9):5544-5550.
    [11] 谭占坤, 高瑞玲, 商振达, 李述方, 刘锁珠, 商鹏, 强巴央宗. 盐酸不溶灰分作为指示剂测定藏猪饲粮养分的表观消化率. 高原农业, 2019, 3(2):153-158.Tan ZK, Gao RL, Shang ZD, Li SF, Liu SZ, Shang P, Qiangba YZ. Acid-insoluble ash as a marker to determine apparent digestibility in Tibetan pigs. Journal of Plateau Agriculture, 2019, 3(2):153-158. (in Chinese)
    [12] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:high-resolution sample inference from Illumina amplicon data. Nature Methods, 2016, 13(7):581-583.
    [13] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH:a versatile open source tool for metagenomics. PeerJ, 2016, 4:e2584.
    [14] Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo JR, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang LJ, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, Van Der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, Von Hippel M, Walters W, Wan YH, Wang MX, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang YL, Zhu QY, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37(8):852-857.
    [15] Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 2013, 22(21):5271-5277.
    [16] Fouhse JM, Zijlstra RT, Willing BP. The role of gut microbiota in the health and disease of pigs. Animal Frontiers, 2016, 6(3):30-36.
    [17] Summers KL, Frey JF, Ramsay TG, Arfken AM. The piglet mycobiome during the weaning transition:a pilot study. Journal of Animal Science, 2019, 97(7):2889-2900.
    [18] 马丽娜, 杨进波, 丁逸菲, 李颖康. 三代测序技术及其应用研究进展. 中国畜牧兽医, 2019, 46(8):2246-2256.Ma LN, Yang JB, Ding YF, Li YK. Research progress on three generations sequencing technology and its application. China Animal Husbandry & Veterinary Medicine, 2019, 46(8):2246-2256. (in Chinese)
    [19] 唐勇, 刘旭. 基于SMRT测序技术的16S rRNA基因全长测序及其分析方法. 生物技术通报, 2017, 33(8):34-39.Tang Y, Liu X. Full-length sequencing of 16S rRNA gene and its analysis based on the SMRT sequencing technology. Biotechnology Bulletin, 2017, 33(8):34-39. (in Chinese)
    [20] 曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用. 微生物学通报, 2016, 43(10):2269-2276.Cao CX, Han W, Zhang HP. Application of third generation sequencing technology to microbial research. Microbiology China, 2016, 43(10):2269-2276. (in Chinese)
    [21] De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33):14691-14696.
    [22] Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18933-18938.
    [23] Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. Journal of Microbiology, 2014, 52(8):646-651.
    [24] Yang WP, Xin HY, Cao FJ, Hou JX, Ma L, Bao LJ, Wang FY, Yu ZT, Cao BY. The significance of the diversity and composition of the cecal microbiota of the Tibetan swine. Annals of Microbiology, 2018, 68(4):185-194.
    [25] 王海英, 郭守玉, 黄满荣, LUMBSCH HT, 魏江春. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性. 中国科学:生命科学, 2010, 40(8):731-737, 765-772.Wang HY, Guo SY, Huang MR, Thorsten L, Wei JC. Ascomycota has a faster evolutionary rate and higher species diversity than basidiomycota. Scientia Sinica:Vitae, 2010, 40(8):731-737, 765-772. (in Chinese)
    [26] Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DPB, Brown GD, Underhill DM. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science, 2012, 336(6086):1314-1317.
    [27] Kanora A, Maes D. The role of mycotoxins in pig reproduction:a review. Veterinární Medicína, 2010, 54(12):565-576.
    [28] 杨伟平. 藏猪肠道细菌群落组成与纤维素分解菌的研究. 西北农林科技大学论文, 2015.
    [29] Li JY, Luo YH, Chen DW, Yu B, He J, Huang ZQ, Mao XB, Zheng P, Yu J, Luo JQ, Tian G, Yan H, Wang QY, Wang HF. The fungal community and its interaction with the concentration of short-chain fatty acids in the Caecum and colon of weaned piglets. Journal of Animal Physiology and Animal Nutrition, 2020, 104(2):616-628.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭占坤,池福敏,商振达,商鹏,刘锁珠,强巴央宗. 放牧藏猪、舍饲藏猪与商品猪粪便真菌群落组成及其与饲粮纤维消化的相关性研究[J]. 微生物学报, 2022, 62(1): 259-274

复制
分享
文章指标
  • 点击次数:331
  • 下载次数: 1357
  • HTML阅读次数: 967
  • 引用次数: 0
历史
  • 收稿日期:2021-03-31
  • 最后修改日期:2021-06-22
  • 在线发布日期: 2022-01-06
文章二维码