不同饲喂下棉铃虫肠道内生菌的分离鉴定及脱毒效果研究
作者:
基金项目:

国家地区科学基金(31960681);自治区公益性科研院所基本科研业务经费资助项目(KY2019021)


Isolation, identification and detoxification of intestinal endophytes of Helicoverpa armigera under different feeding
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】本研究对比饲喂正常饲料和棉粕饲料下棉铃虫(Helicoverpa armigera)肠道中可培养微生物的异同,并对筛选菌株进行棉酚耐受及降解作用的研究,为棉铃虫肠道微生物在棉源饲料中的脱毒作用提供理论和实验支持。【方法】通过饲喂不同饲料、醋酸棉酚单一碳源微生物选择性培养,分离饲喂正常饲料和棉粕饲料下棉铃虫肠道可培养棉酚耐受性内生菌,并进行16S rRNA基因序列分析鉴定;在一定浓度的醋酸棉酚液体中培养,对菌株进行脱毒作用分析,复合配比后,研究棉铃虫肠道复合菌在棉酚降解中的效果。【结果】共计分离得到的32株菌株,其中17株细菌可能是新分类单元,其中14株为潜在新种,3株为可能的新属。饲喂正常饲料组棉铃虫肠道中分离出17株分属于3个门、10个属,饲喂棉粕饲料组棉酚虫肠道中分离出15株属于2个门、8个属。随着选择性培养基醋酸棉酚浓度的升高,饲喂棉粕饲料组肠道菌耐受100、300、500、1 000 mg/kg醋酸棉酚的菌株数均比饲喂正常饲料组高。在所有的耐受菌株中棉酚降解率达到50%以上的有15株,对棉酚最高降解率达90.83%。在肠道菌复合降解棉酚实验中,棉铃虫肠道内生菌实验组对棉酚的降解率显著高于对照组(P<0.05),棉酚降解率最高为87.04%。【结论】本研究证明了棉铃虫肠道内生细菌中存在对棉酚具有较高降解能力的菌株,丰富了棉酚降解菌的菌种资源,并对复合菌在棉源饲料开发应用的潜力进行了初步研究,为棉源饲料中棉酚的生物降解提供了一条新途径。

    Abstract:

    [Objective] This study compared the differentiation of endophytes in the intestines of Helicoverpa armigera under feeding normal diet and cottonseed meal diet, and studied gossypol tolerance and degradation effects of the screened strains, which provided theoretical and experimental support for further research on the detoxification of Helicoverpa armigera intestinal microorganisms in cotton-derived feed.[Methods] The gossypol tolerant endophytic bacteria were isolated in the intestinal tract of Helicoverpa armigera under different feeding conditions, selective culture of gossypol acetate single carbon source microorganism, and 16S rRNA gene sequence were analyzed and identified. The detoxification effect of the strains was analyzed by cultivated in a certain concentration of gossypol acetate liquid, and the compound ratio was used to study the effect of the compound bacteria on gossypol degradation.[Results] A total of 32 strains were isolated from Helicoverpa armigera, of which 17 strains were potential new taxon, and 14 were potential new species, and 3 were possible potential new genera. 17 strains were isolated from the intestinal tract of Helicoverpa armigera under feeding normal diet, belonging to 10 genera in 3 phyla of bacteria, 15 strains were isolated from the intestinal tract of Helicoverpa armigera under feeding cottonseed meal diet, belonging to 8 genera in 2 phyla of bacteria. With the increase of the concentration of gossypol acetate in the selective medium, the number of intestinal bacteria resistant to 100, 300, 500, 1 000 mg/kg gossypol acetate in the cottonseed meal feed groups were higher than those in the normal feed groups. Among all the tolerant strains, 15 strains had a degradation rate of more than 50%, and the highest degradation rate of gossypol was 90.83%. In the experiment of compound degradation of gossypol by intestinal bacteria, the degradation rate of gossypol in the experimental group were significantly higher than that in the control group (P<0.05), and the highest degradation rate of gossypol was 87.04%.[Conclusion] It was proved that there were some higher ability of degrading gossypol strains in the intestinal endophytic bacteria of Helicoverpa armigera, which enriches the resource of the strains degrading gossypol, and preliminary research on the potential of compound bacteria in the development and application of cotton-derived feed was conducted, which provided a new way for the biodegradation of gossypol in cotton-derived feed.

    参考文献
    [1] 钱玉源, 刘祎, 张海娜, 崔淑芳, 金卫平, 王广恩, 李俊兰. 棉酚合成及棉花腺体形成相关基因的研究进展. 棉花学报, 2017, 29(3):301-306.Qian YY, Liu Y, Zhang HN, Cui SF, Jin WP, Wang GE, Li JL. Advances in genes related to gossypol biosynthesis and cotton gland formation. Cotton Science, 2017, 29(3):301-306. (in Chinese)
    [2] 胡波, 郑文新, 高维明, 杨海燕. 游离棉酚毒理学与脱毒技术的研究进展. 草食家畜, 2020(3):1-7, 38.Hu B, Zheng WX, Gao WM, Yang HY. Research progress of toxicology and detoxification technology of free gossypol. Grass-Feeding Livestock, 2020(3):1-7, 38. (in Chinese)
    [3] 杨霞. 高效棉酚降解菌株的筛选鉴定及其差异蛋白质组学研究. 浙江大学学位论文, 2010.
    [4] 周梦宇, 李海芳, 武钰, 姚军. 游离棉酚降解产物四甲氧基棉酚致小鼠精子畸形效应的生殖毒性研究. 新疆医科大学学报, 2018, 41(6):744-746.Zhou MY, Li HF, Wu Y, Yao J. Study on reproductive toxicity of free gossypol degradation products tetramethoxyl gossypol by mice sperm deformity effect. Journal of Xinjiang Medical University, 2018, 41(6):744-746. (in Chinese)
    [5] Santana AT, Guelfi M, Medeiros HCD, Tavares MA, Bizerra PFV, Mingatto FE. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E. Biological Research, 2015, 48:43.
    [6] 李建国. 游离棉酚对蛋鸡的毒性研究. 西北农林科技大学学位论文, 2005.
    [7] Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14(1):82-91.
    [8] Kaltenpoth M, Engl T. Defensive microbial symbionts in Hymenoptera. Functional Ecology, 2014, 28(2):315-327.
    [9] Smith CC, Srygley RB, Healy F, Swaminath K, Mueller UG. Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function. Frontiers in Microbiology, 2017, 8:801.
    [10] Thong-On A, Suzuki K, Noda S, Inoue JI, Kajiwara S, Ohkuma M. Isolation and characterization of anaerobic bacteria for symbiotic recycling of uric acid nitrogen in the gut of various termites. Microbes and Environments, 2012, 27(2):186-192.
    [11] Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature Communications, 2015, 6:7618.
    [12] Radominska-Pandya A, Bratton SM, Redinbo MR, Miley MJ. The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed:the significance for human UGTs from both the 1A and 2B families. Drug Metabolism Reviews, 2010, 42(1):133-144.
    [13] Howe GA, Jander G. Plant immunity to insect herbivores. Annual Review of Plant Biology, 2008, 59(1):41-66.
    [14] Frago E, Dicke M, Godfray HCJ. Insect symbionts as hidden players in insect-plant interactions. Trends in Ecology & Evolution, 2012, 27(12):705-711.
    [15] 叶明. 微生物学实验技术. 合肥:合肥工业大学出版社, 2009:371-373.
    [16] 胡亚楠, 贺旭, 亚森·沙力, 罗明, 张宇宏, 张帅. 大蜡螟和黄粉虫肠道菌中聚乙烯地膜降解细菌的筛选及其降解性能. 微生物学通报, 2020, 47(12):4029-4041.Hu YN, He X, YASENShali, Luo M, Zhang YH, Zhang S. Screening of polyethylene film-degrading bacteria from gut microbiota of Galleria mellonella and Tenebrio molitor. Microbiology China, 2020, 47(12):4029-4041. (in Chinese)
    [17] Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):346-351.
    [18] Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 1):249-266.
    [19] Byndloss MX, Bäumler AJ. The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16(2):103-110.
    [20] 姚志超, 白帅, 张宏宇. 昆虫肠道防御及微生物稳态维持机制. 微生物学报, 2018, 58(6):1036-1048.Yao ZC, Bai S, Zhang HY. Intestinal defense system and mechanism of maintenance of microbiota homeostasis in insects. Acta Microbiologica Sinica, 2018, 58(6):1036-1048. (in Chinese)
    [21] Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D. Microbial symbionts:a resource for the management of insect-related problems. Microbial Biotechnology, 2012, 5(3):307-317.
    [22] Tao XY, Xue XY, Huang YP, Chen XY, Mao YB. Gossypol-enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Molecular Ecology, 2012, 21(17):4371-4385.
    [23] Frago E, Dicke M, Godfray HCJ. Insect symbionts as hidden players in insect-plant interactions. Trends in Ecology & Evolution, 2012, 27(12):705-711.
    [24] 骆伦伦. 秸秆对黄粉虫生长发育、消化酶和肠道微生物的影响. 浙江农林大学学位论文, 2017.
    [25] 梅承, 范硕, 杨红. 昆虫肠道微生物分离培养策略及研究进展. 微生物学报, 2018, 58(6):985-994.Mei C, Fan S, Yang H. The strategies of isolation of insect gut microorganisms. Acta Microbiologica Sinica, 2018, 58(6):985-994. (in Chinese)
    [26] Colman DR, Toolson EC, Takacs-Vesbach CD. Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 2012, 21(20):5124-5137.
    [27] Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function. FEMS Microbiology Reviews, 2013, 37(5):699-735.
    [28] Rodríguez-Ruano SM, KochováV, Rego ROM, Schmidt JO, Roachell W, Hypša V, Nováková V. Microbiomes of North American Triatominae:the grounds for Chagas disease epidemiology. Frontiers in Microbiology, 2018, 9:1167.
    [29] Xia XF, Sun BT, Gurr GM, Vasseur L, Xue MQ, You MS. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 2018, 9:25. DOI:10.3389/fmicb.2018.00025.
    [30] 姜笑维, 关丹阳, 李清亚, 刘晓, Hongmei LI-BYARLAY, 贺秉军. 七氟菊酯和溴氰菊酯对棉铃虫肠道菌群的影响. 昆虫学报, 2020, 63(10):1183-1193.Jiang XW, Guan DY, Li QY, Liu X, Libyarlay H, He BJ. Effects of tefluthrin and deltamethrin on gut microbiota in Helicoverpa armigera (Lepidoptera:noctuidae). Acta Entomologica Sinica, 2020, 63(10):1183-1193. (in Chinese)
    [31] 魏辅文. 动物适应性进化研究的新视角:动物肠道微生物组. 中国科学:生命科学, 2016, 46(11):1338-1340.Wei FW. New angle to study the adaptive evolution:animal gut microbiome. Scientia Sinica:Vitae, 2016, 46(11):1338-1340. (in Chinese)
    [32] 侯敏, 刘亚男, 王宁, 包慧芳, 詹发强, 侯新强, 杨蓉, 崔卫东. 微生物发酵技术在新疆棉籽壳饲料化的应用研究进展. 黑龙江畜牧兽医, 2020(21):44-47, 56.Hou M, Liu YN, Wang N, Bao HF, Zhan FQ, Hou XQ, Yang R, Cui WD. Advances in the application of microbial fermentation technology on cotton seed husk feed in Xinjiang. Heilongjiang Animal Science and Veterinary Medicine, 2020(21):44-47, 56. (in Chinese)
    [33] Panigrahi S, Hammonds TW. Egg discolouration effects of including screw-press cottonseed meal in laying hen diets and their prevention. British Poultry Science, 1990, 31(1):107-120.
    [34] Santana AT, Guelfi M, Medeiros HCD, Tavares MA, Bizerra PFV, Mingatto FE. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E. Biological Research, 2015, 48:43.
    [35] Ni ZH, Dai XF, Wang B, Ding W, Cheng PK, Xu L, Lian JQ, He FT. Natural Bcl-2 inhibitor (-)-gossypol induces protective autophagy via reactive oxygen species-high mobility group box 1 pathway in Burkitt lymphoma. Leukemia & Lymphoma, 2013, 54(10):2263-2268.
    [36] 侯敏, 包慧芳, 王宁, 詹发强, 杨蓉, 龙宣杞, 崔卫东. 高效降解棉酚菌株的筛选及脱毒条件的研究. 新疆农业科学, 2016, 53(6):1114-1121.Hou M, Bao HF, Wang N, Zhan FQ, Yang R, Long XQ, Cui WD. Screening and breeding of highly-effected degrading gossypol strains and study on defoxication technology and conditions. Xinjiang Agricultural Sciences, 2016, 53(6):1114-1121. (in Chinese)
    [37] 张文举, 许梓荣, 孙建义, 杨霞, 赵顺红. 假丝酵母ZD-3与黑曲霉ZD-8复合固体发酵对棉籽饼脱毒及营养价值的影响研究. 中国粮油学报, 2006, 21(6):129-135.Zhang WJ, Xu ZR, Sun JY, Yang X, Zhao SH. Effect of solid substrate fermentation with mixed cultured C. tropicalis ZD-3 and A. niger ZD-8 on nutritional value and detoxification of cottonseed meal. Journal of the Chinese Cereals and Oils Association, 2006, 21(6):129-135. (in Chinese)
    [38] Krempl C, Heidel-Fischer HM, Jiménez-Alemán GH, Reichelt M, Menezes RC, Boland W, Vogel H, Heckel DG, Joußen N. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 2016, 78:69-77.
    [39] 杨恩东, 崔丹曦, 汪维云. 马赛菌属细菌研究进展. 微生物学通报, 2019, 46(6):1537-1548.Yang ED, Cui DX, Wang WY. Research progress on the genus Massilia. Microbiology China, 2019, 46(6):1537-1548. (in Chinese)
    [40] 王涛, 蓝慧, 田云, 卢向阳. 多环芳烃的微生物降解机制研究进展. 化学与生物工程, 2016, 33(2):8-14.Wang T, Lan H, Tian Y, Lu XY. Research progress on microbial degradation mechanisms for polycyclic aromatic hydrocarbons. Chemistry & Bioengineering, 2016, 33(2):8-14. (in Chinese)
    [41] 郭凯, 崔卫东, 王宁, 侯敏, 包慧芳, 房世杰. 黑曲霉ZD利用棉花秸秆固体发酵产纤维素酶条件优化. 新疆农业科学, 2018, 55(9):1717-1727.Guo K, Cui WD, Wang N, Hou M, Bao HF, Fang SJ. Optimization of cellulase production by Aspergillus niger ZD using solid fermentation of cotton straw. Xinjiang Agricultural Sciences, 2018, 55(9):1717-1727. (in Chinese)
    [42] Oboh G. Nutrient enrichment of cassava peels using a mixed culture of Saccharomyces cerevisae and Lactobacillus spp. solid media fermentation techniques. Electronic Journal of Biotechnology, 2006, 9(1):46-49.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯敏,张晨曦,詹发强,杨蓉,龙宣杞,崔卫东. 不同饲喂下棉铃虫肠道内生菌的分离鉴定及脱毒效果研究[J]. 微生物学报, 2022, 62(1): 305-320

复制
分享
文章指标
  • 点击次数:440
  • 下载次数: 1183
  • HTML阅读次数: 870
  • 引用次数: 0
历史
  • 收稿日期:2021-04-13
  • 最后修改日期:2021-06-20
  • 在线发布日期: 2022-01-06
文章二维码