基于代谢组学的抗生素与细菌间作用研究进展
作者:
基金项目:

国家自然科学基金(31730070);广东省“珠江人才计划”本土创新团队(2017BT01S174);广东省科学院项目(2020GDASYL-20200401002);广东省重点实验室(2020B121201009)


Research progress of the interaction between antibiotics and bacteria based on metabolomics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    抗生素杀菌是一个复杂的生理过程,杀菌抗生素与靶点作用后的下游代谢变化与抗生素作用效果紧密联系,其通过干扰细菌代谢状态加速死亡进程,而细菌改变代谢状态也能影响抗生素的有效性。代谢组学通过监测细菌在抗生素作用下的变化提供全面代谢信息,我们回顾近年来基于代谢组学对抗生素与细菌间作用的研究进展,以期为开发抗生素佐剂提高抗生素效果提供参考。

    Abstract:

    Antibiotic killing is a complex physiological process. The downstream metabolic changes of antibiotic-target interactions are closely related to antibiotic efficacy. Bactericidal antibiotics speed up the death process by perturbing the bacterial metabolism, which also influences the antibiotic efficacy. Metabolomics provides comprehensive metabolic information for monitoring the changes of bacterial metabolism under the action of antibiotics. Here we review recent metabolomics-driven studies on the interaction between antibiotics and bacteria, intending to provide a reference for the development of antibiotic adjuvants to enhance the antibiotic efficacy.

    参考文献
    [1] Piddock LJ. The crisis of no new antibiotics-what is the way forward? The Lancet Infectious Diseases, 2012, 12(3):249-253.
    [2] Muloi D, Ward MJ, Pedersen AB, Fèvre EM, Woolhouse MEJ, Van Bunnik BAD. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathogens and Disease, 2018, 15(8):467-474.
    [3] Ye QH, Wu QP, Zhang SH, Zhang JM, Yang GZ, Wang J, Xue L, Chen MT. Characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae from retail food in China. Frontiers in Microbiology, 2018, 9:1709.
    [4] Zhang Y, Chen MF, Yu PF, Yu SB, Wang J, Guo H, Zhang JH, Zhou H, Chen MT, Zeng HY, Wu S, Pang R, Ye QH, Xue L, Zhang SH, Li Y, Zhang JM, Wu QP, Ding Y. Prevalence, virulence feature, antibiotic resistance and MLST typing of Bacillus cereus isolated from retail aquatic products in China. Frontiers in Microbiology, 2020, 11:1513.
    [5] Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5):797-810.
    [6] Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Bacterial metabolism and antibiotic efficacy. Cell Metabolism, 2019, 30(2):251-259.
    [7] Dik DA, Fisher JF, Mobashery S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chemical Reviews, 2018, 118(12):5952-5984.
    [8] Zampieri M, Zimmermann M, Claassen M, Sauer U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Reports, 2017, 19(6):1214-1228.
    [9] Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrübbers L, Lopatkin AJ, Satish S, Nili A, Palsson BO, Walker GC, Collins JJ. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell, 2019, 177(6):1649-1661.e9.
    [10] Zampieri M, Enke T, Chubukov V, Ricci V, Piddock L, Sauer U. Metabolic constraints on the evolution of antibiotic resistance. Molecular Systems Biology, 2017, 13(3):917.
    [11] Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Reports, 2015, 13(5):968-980.
    [12] Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biology, 2011, 9(5):e1001065.
    [13] Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473(7346):216-220.
    [14] Gardner SG, Marshall DD, Daum RS, Powers R, Somerville GA. Metabolic mitigation of Staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrobial Agents and Chemotherapy, 2018, 62(1):e01608-e01617.
    [15] Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 2014, 159(6):1300-1311.
    [16] Wong F, Stokes JM, Cervantes B, Penkov S, Friedrichs J, Renner LD, Collins JJ. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nature Communications, 2021, 12:2321.
    [17] Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 2012, 336(6079):315-319.
    [18] Liu YY, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science, 2013, 339(6124):1210-1213.
    [19] Keren I, Wu YX, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 2013, 339(6124):1213-1216.
    [20] Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annual Review of Pharmacology and Toxicology, 2015, 55:313-332.
    [21] Van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology, 2017, 25(6):456-466.
    [22] Zhang S, Yang MJ, Peng B, Peng XX, Li H. Reduced ROS-mediated antibiotic resistance and its reverting by glucose in Vibrio alginolyticus. Environmental Microbiology, 2020, 22(10):4367-4380.
    [23] Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A. Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17(7):441-48.
    [24] Windels EM, Michiels JE, Van Den Bergh B, Fauvart M, Michiels J. Antibiotics:combatting tolerance to stop resistance. mBio, 2019, 10(5):e02095-19.
    [25] Jung SH, Ryu CM, Kim JS. Bacterial persistence:fundamentals and clinical importance. Journal of Microbiology, 2019, 57(10):829-835.
    [26] Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, Earl AM, Cheney NJ, Yang JH, Collins JJ. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science, 2021, 371(6531):eaba0862.
    [27] Chubiz LM, Rao CV. Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon. Journal of Bacteriology, 2010, 192(18):4786-4789.
    [28] Amoroso A, Boudet J, Berzigotti S, Duval V, Teller N, Mengin-Lecreulx D, Luxen A, Simorre JP, Joris B. A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathogens, 2012, 8(3):e1002571.
    [29] Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian GB, Dong BL, Huang XH, Yu LF, Gu DX, Ren HW, Chen XJ, Lv L, He DD, Zhou HW, Liang ZS, Shen JZ. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:a microbiological and molecular biological study. The Lancet Infectious Diseases, 2016, 16(2):161-168.
    [30] Lei T, Zhang JM, Jiang FF, He M, Zeng HY, Chen MT, Wu S, Wang J, Ding Y, Wu QP. First detection of the plasmid-mediated colistin resistance gene mcr-1 in virulent Vibrio parahaemolyticus. International Journal of Food Microbiology, 2019, 308:108290.
    [31] Liu YY, Zhu Y, Wickremasinghe H, Bergen PJ, Lu J, Zhu XQ, Zhou QL, Azad M, Nang SC, Han ML, Lei T, Li J, Liu JH. Metabolic perturbations caused by the over-expression of mcr-1 in Escherichia coli. Frontiers in Microbiology, 2020, 11:588658.
    [32] Dunphy LJ, Yen P, Papin JA. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-res Hamblin M, Lobritz MA, Collins JJ. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Molecular Cell, 2017, 68(6):1147-1154.e3.
    [50] Vilchèze C, Hartman T, Weinrick B, Jain P, Weisbrod TR, Leung LW, Freundlich JS, Jacobs WR. Enhanced respiration prevents drug tolerance and drug resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17):4495-4500.
    [51] Duan XK, Huang X, Wang XY, Yan SQ, Guo SY, Abdalla AE, Huang CW, Xie JP. L-serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production. The Journal of Antimicrobial Chemotherapy, 2016, 71(8):2192-2199.
    [52] Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature Biotechnology, 2013, 31(2):160-165.
    [53] Wang Z, Soni V, Marriner G, Kaneko T, Boshoff HIM, Barry CE 3rd, Rhee KY. Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39):19646-19651.
    [54] Zampieri M, Szappanos B, Buchieri MV, Trauner A, Piazza I, Picotti P, Gagneux S, Borrell S, Gicquel B, Lelievre J, Papp B, Sauer U. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, 2018, 10(429):eaal3973.
    [55] Wang YC, Han BJ, Xie YX, Wang HB, Wang RM, Xia W, Li HY, Sun HZ. Combination of gallium(III) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chemical Science, 2019, 10(24):6099-6106.
    [56] Øyås O, Borrell S, Trauner A, Zimmermann M, Feldmann J, Liphardt T, Gagneux S, Stelling J, Sauer U, Zampieri M. Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis. Proceedings of the Nati?nal Academy of Sciences of the United States of America, 2020, 117(15):8494-8502.
    [57] Yang JH, Bhargava P, McCloskey D, Mao N, Palsson BO, Collins JJ. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host & Microbe, 2017, 22(6):757-765.e3.
    [58] Pang R, Zhou H, Huang YF, Su YB, Chen XH. Inhibition of host arginase activity against staphylococcal bloodstream infection by different metabolites. Frontiers in Immunology, 2020, 11:1639.Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ. Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27):8173-8180.
    [44] Liu SR, Peng XX, Li H. Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infection and Drug Resistance, 2019, 12:417-429.
    [45] Schiessl KT, Hu FH, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W, Dietrich LEP. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nature Communications, 2019, 10:762.
    [46] Zemke AC, Kocak BR, Bomberger JM. Sodium nitrite inhibits killing of Pseudomonas aeruginosa biofilms by ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2017, 61(1):e00448-e00416.
    [47] Mates SM, Eisenberg ES, Mandel LJ, Patel L, Kaback HR, Miller MH. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(21):6693-6697.
    [48] Lebeaux D, Chauhan A, Létoffé S, Fischer F, De Reuse H, Beloin C, Ghigo JM. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. The Journal of Infectious Diseases, 2014, 210(9):1357-1366.
    [49] Gutierrez A, Jain S, Bhargava P,
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈敏玲,韦献虎,张菊梅,丁郁,吴清平. 基于代谢组学的抗生素与细菌间作用研究进展[J]. 微生物学报, 2022, 62(2): 403-413

复制
分享
文章指标
  • 点击次数:914
  • 下载次数: 1805
  • HTML阅读次数: 2038
  • 引用次数: 0
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2021-06-01
  • 在线发布日期: 2022-01-28
文章二维码