微生物源甲硫氨酸γ-裂解酶的研究进展
作者:
基金项目:

国家自然科学基金(31570054,21838002);发酵工程教育部重点实验室开放课题(202009FE18)


Research progress of methionine γ-lyase from microorganism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | |
  • 资源附件
  • |
  • 文章评论
    摘要:

    甲硫氨酸γ-裂解酶(methionine γ-lyase,MGL)催化甲硫氨酸γ位C-S键的裂解反应,生成等摩尔的α-酮丁酸、甲基硫醇和氨。MGL降低胞内甲硫氨酸浓度,显著抑制恶性肿瘤细胞的生长和迁移,激发正常细胞的抗氧化反应,开发高效的MGL已成为肿瘤治疗和抗衰老研究的热点。MGL广泛存在于微生物中,而在哺乳动物中不存在,MGL是开发抗致病微生物感染药物的重要靶标。产物甲基硫醇及其衍生物是构成食品香味的主体成分,其组分和浓度决定了食品整体香味的形成,系统阐明MGL的催化机制和活性调节机制将推动食品品质及其稳定性的精准控制。本文总结了微生物源MGL的挖掘、催化机制和改造方面的最新进展,讨论了MGL在癌症治疗、抗衰老、抗致病微生物感染以及食品香味合成和制造领域的应用情况,展望了MGL的发展前景与挑战。

    Abstract:

    Methionine γ-lyase (MGL) catalyzes the cleavage of C-S bond in methionine, which produces equimolar products including α-ketobutyric acid, methanethiol and ammonia. MGL reduces the intracellular concentration of methionine, which significantly inhibits the growth and migration of malignant tumor cells and triggers the antioxidant response in normal cells. Engineering MGL for enhancing its catalytic efficiency is the focus for tumor therapy and anti-aging. MGL widely exists in microorganisms, but not in mammals. MGL is an important target for the development of antimicrobial drugs toward microbial pathogens. Methanethiol and its derivatives are the main components of food aroma, and the composition and concentration of methanethiol and its derivatives determine the formation of food aroma. Elucidating the catalytic mechanism and identifying the key elements control the activity of MGL will promote the precise control of food quality and its stability. In this paper, the latest advances in the discovery, catalytic mechanism and engineering of MGL from microorganisms were summarized. The applications of MGL in tumor therapy, anti-aging, anti-microbial infection and synthesis and manufacturing of food aroma were discussed, and then the development and challenge of MGL were prospected.

    参考文献
    [1] Raboni S, Revtovich S, Demitri N, Giabbai B, Storici P, Cocconcelli C, Faggiano S, Rosini E, Pollegioni L, Galati S, Buschini A, Morozova E, Kulikova V, Nikulin A, Gabellieri E, Cioni P, Demidkina T, Mozzarelli A. Engineering methionine γ-lyase from Citrobacter freundii for anticancer activity. Biochimica et Biophysica Acta:BBA-Proteines and Proteomics, 2018, 1866(12):1260-1270.
    [2] Foo TC, Terentis AC, Venkatachalam KV. A continuous spectrophotometric assay and nonlinear kinetic analysis of methionine γ-lyase catalysis. Analytical Biochemistry, 2016, 507:21-26.
    [3] El-Sayed AS. Microbial l-methioninase:production, molecular characterization, and therapeutic applications. Applied Microbiology and Biotechnology, 2010, 86(2):445-467.
    [4] Morozova EA, Kulikova VV, Rodionov AN, Revtovich SV, Anufrieva NV, Demidkina TV. Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie, 2016, 128/129:92-98.
    [5] Pokrovsky VS, Yu Anisimova N, Zh Davydov D, Bazhenov SV, Bulushova NV, Zavilgelsky GB, Kotova VY, Manukhov IV. Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Investigational New Drugs, 2019, 37(2):201-209.
    [6] Strekalova E, Malin D, Good DM, Cryns VL. Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clinical Cancer Research, 2015, 21(12):2780-2791.
    [7] Lee BC, Kaya A, Ma SM, Kim G, Gerashchenko MV, Yim SH, Hu Z, Harshman LG, Gladyshev VN. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nature Communications, 2014, 5:3592.
    [8] Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, Stekovic S, Gleixner C, Schmid C, Klug L, Sorgo AG, Eisenberg T, Büttner S, Mariño G, Koziel R, Jansen-Dürr P, Fröhlich KU, Kroemer G, Madeo F. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genetics, 2014, 10(5):e1004347.
    [9] Zhao QL, Wang ZL, Yang L, Zhang S, Jia KZ. YALI0C22088g from Yarrowia lipolytica catalyses the conversion of L-methionine into volatile organic sulfur-containing compounds. Microbial Biotechnology, 2021:00. DOI:10.1111/1751-7915.13796.
    [10] Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Heilier JF, Landaud S, Bonnarme P, Beckerich JM. New insights into sulfur metabolism in yeasts as revealed by studies of Yarrowia lipolytica. Applied and Environmental Microbiology, 2013, 79(4):1200-1211.
    [11] Holt S, Cordente AG, Williams SJ, Capone DL, Jitjaroen W, Menz IR, Curtin C, Anderson PA. Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. Applied and Environmental Microbiology, 2011, 77(11):3626-3632.
    [12] Liu J, Wu Q, Wang P, LinJC, Huang L, Xu Y. Synergistic effect in core microbiota associated with sulfur metabolism in spontaneous Chinese liquor fermentation. Applied and Environmental Microbiology, 2017, 83(24):e01475-e01417.
    [13] Splivallo R, Ottonello S, Mello A, Karlovsky P. Truffle volatiles:from chemical ecology to aroma biosynthesis. New Phytologist, 2011, 189(3):688-699.
    [14] Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 2017, 41(Supp_1):S95-S128.
    [15] Heitmann M, Zannini E, Arendt E. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters:a review. Critical Reviews in Food Science and Nutrition, 2018, 58(7):1152-1164.
    [16] Kandalam U, Ledra N, Laubach H, Venkatachalam KV. Inhibition of methionine gamma lyase deaminase and the growth of Porphyromonas gingivalis:a therapeutic target for halitosis/periodontitis. Archives of Oral Biology, 2018, 90:27-32.
    [17] Kreis W, Hession C. Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor. Cancer Research, 1973, 33(8):1866-1869.
    [18] Fukumoto M, Kudou DZ, Murano S, Shiba T, Sato D, Tamura T, Harada S, Inagaki K. The role of amino acid residues in the active site of L-methionine γ-lyase from Pseudomonas putida. Bioscience, Biotechnology, and Biochemistry, 2012, 76(7):1275-1284.
    [19] Mamaeva DV, Morozova EA, Nikulin AB, Revtovich SV, Nikonsov SV, Garber MB, Demidkina TV. Structure of Citrobacter freundii L-methionine gamma-lyase. Acta Crystallographica Section F Structual Biology Communications, 2005, F61:546-549.
    [20] Tanaka H, Esaki N, Soda K. Properties of L-methionine gamma-lyase from Pseudomonas ovalis. Biochemistry, 1977, 16(1):100-106.
    [21] Hanniffy SB, Philo M, Peláez C, Gasson MJ, Requena T, Martínez-Cuesta MC. Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds. Applied and Environmental Microbiology, 2009, 75(8):2326-2332.
    [22] Kudou DZ, Yasuda E, Hirai Y, Tamura T, Inagaki K. Molecular cloning and characterization of L-methionine γ-lyase from Streptomyces avermitilis. Journal of Bioscience and Bioengineering, 2015, 120(4):380-383.
    [23] Revtovich SV, Faleev NG, Morozova EA, Anufrieva NV, Nikulin AD, Demidkina TV. Crystal structure of the external aldimine of Citrobacter freundii methionine γ-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of α-and β-protons of competitive inhibitors. Biochimie, 2014, 101:161-167.
    [24] Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S. X-ray snapshots of a pyridoxal enzyme:a catalytic mechanism involving concerted[1,5] -hydrogen sigmatropy in methionine γ-lyase. Scientific Reports, 2017, 7:4874.
    [25] Yang ZJ, Wang JH, Lu Q, Xu JB, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian CG, Chen CM, Zhang DD, Zhang Y, Li SK, Sun XH, Tan YY, Yagi S, Frenkel EP, Hoffman RM. PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Research, 2004, 64(18):6673-6678.
    [26] Sun XH, Yang ZJ, Li SK, Tan YY, Zhang N, Wang XE, Yagi S, Yoshioka T, Takimoto A, Mitsushima K, Suginaka A, Frenkel EP, Hoffman RM. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5'-phosphate supplementation. Cancer Research, 2003, 63(23):8377-8383.
    [27] Messerschmidt A, Worbs M, Steegborn C, Wahl MC, Huber R, Laber B, Clausen T. Determinants of enzymatic specificity in the cys-met-metabolism PLP-dependent enzyme family:crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biological Chemistry, 2003, 384(3):373-386.
    [28] Holt S, Cordente AG, Curtin C. Saccharomyces cerevisiae STR3 and yeast cystathionine β-lyase enzymes. Bioengineered, 2012, 3(3):180-182.
    [29] Jia KZ, Zhang Q, Sun LY, Xu YH, Li HM, Tang YJ. Clonostachys rosea demethiolase STR3 controls the conversion of methionine into methanethiol. Scientific Reports, 2016, 6:21920.
    [30] Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical biology of H2S signaling through persulfidation. Chemical Reviews, 2018, 118(3):1253-1337.
    [31] Sagong HY, Kim B, Joo S, Kim KJ. Structural and functional characterization of cystathionine γ-lyase from Bacillus cereus ATCC 14579. Journal of Agricultural and Food Chemistry, 2020, 68(51):15267-15274.
    [32] Breitinger U, Clausen T, Ehlert S, Huber R, Laber B, Schmidt F, Pohl E, Messerschmidt A. The three-dimensional structure of cystathionine beta-lyase from Arabidopsis and its substrate specificity. Plant Physiology, 2001, 126(2):631-642.
    [33] Li Z, Zhao YS, Zhou HF, Luo HB, Zhan CG. Catalytic roles of coenzyme pyridoxal-5'-phosphate (PLP) in PLP-dependent enzymes:reaction pathway for methionine-γ-lyase-catalyzed L-methionine depletion. ACS Catalysis, 2020, 10(3):2198-2210.
    [34] Toney MD. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta:BBA-Proteines and Proteomics, 2011, 1814(11):1407-1418.
    [35] Song HG, Xu R, Guo ZH. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. ChemBioChem, 2015, 16(1):100-109.
    [36] Lu WC, Saha A, Yan WP, Garrison K, Lamb C, Pandey R, Irani S, Lodi A, Lu XY, Tiziani S, Zhang YJ, Georgiou G, DiGiovanni J, Stone E. Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23):13000-13011.
    [37] Yan WP, Stone E, Zhang YJ. Structural snapshots of an engineered cystathionine-γ-lyase reveal the critical role of electrostatic interactions in the active site. Biochemistry, 2017, 56(6):876-885.
    [38] Stone E, Paley O, Hu J, Ekerdt B, Cheung NK, Georgiou G. De novo engineering of a human cystathionine-γ-lyase for systemic L-methionine depletion cancer therapy. ACS Chemical Biology, 2012, 7(11):1822-1829.
    [39] Sharma B, Singh S, Kanwar SS. L-methionase:a therapeutic enzyme to treat malignancies. BioMed Research International, 2014, 2014:506287.
    [40] Chaturvedi S, Hoffman RM, Bertino JR. Exploiting methionine restriction for cancer treatment. Biochemical Pharmacology, 2018, 154:170-173.
    [41] Wang ZX, Yip LY, Lee JHJ, Wu ZW, Chew HY, Chong PKW, Teo CC, Ang HYK, Peh KLE, Yuan J, Ma SM, Choo LSK, Basri N, Jiang X, Yu Q, Hillmer AM, Lim WT, Lim TKH, Takano A, Tan EH, Tan DSW, Ho YS, Lim B, Tam WL. Methionine is a metabolic dependency of tumor-initiating cells. Nature Medicine, 2019, 25(5):825-837.
    [42] Miao YX, Yang H, Levorse J, Yuan SP, Polak L, Sribour M, Singh B, Rosenblum MD, Fuchs E. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell, 2019, 177(5):1172-1186.e14.
    [43] Batlle E, Clevers H. Cancer stem cells revisited. Nature Medicine, 2017, 23(10):1124-1134.
    [44] Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G, Aburatani H, Kume K, Endo F, Kume S. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metabolism, 2014, 19(5):780-794.
    [45] Yin J, Ren WK, Chen S, Li YY, Han H, Gao J, Liu G, Wu X, Li TJ, Woo Kim S, Yin YL. Metabolic regulation of methionine restriction in diabetes. Molecular Nutrition & Food Research, 2018, 62(10):1700951.
    [46] Sato D, Shiba T, Yunoto S, Furutani K, Fukumoto M, Kudou DZ, Tamura T, Inagaki K, Harada S. Structural and mechanistic insights into homocysteine degradation by a mutant of methionine γ-lyase based on substrate-assisted catalysis. Protein Science, 2017, 26(6):1224-1230.
    [47] Kudou DZ, Misaki S, Yamashita M, Tamura T, Esaki N, Inagaki K. The role of cysteine116 in the active site of the antitumor enzyme L-methionine γ-lyase from Pseudomonas putida. Bioscience, Biotechnology, and Biochemistry, 2008, 72(7):1722-1730.
    [48] Coombs GH, Mottram JC. Trifluoromethionine, a prodrug designed against methionine γ-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy, 2001, 45(6):1743-1745.
    [49] Sato D, Kobayashi S, Yasui H, Shibata N, Toru T, Yamamoto M, Tokoro G, Ali V, Soga T, Takeuchi T, Suematsu M, Nozaki T. Cytotoxic effect of amide derivatives of trifluoromethionine against the enteric protozoan parasite Entamoeba histolytica. International Journal of Antimicrobial Agents, 2010, 35(1):56-61.
    [50] Ito S, Narise A, Shimura S. Identification of a methioninase inhibitor, myrsinoic acid B, from Myrsine seguinii Lév., and its inhibitory activities. Bioscience, Biotechnology, and Biochemistry, 2008, 72(9):2411-2414.
    [51] Batuev EA, Lisunov AY, Morozova EA, Klochkov VV, Anufrieva NV, Demidkina TV, Polshakov VI. NMR screening of potential inhibitors of methionine γ-lyase from Citrobacter freundii. Molecular Biology, 2014, 48(6):896-905.
    [52] Revtovich S, Morozova E, Kulikova V, Koval V, Anufrieva N, Nikulin A, Demidkina T. Sulfoxides of sulfur-containing amino acids are suicide substrates of Citrobacter freundii methionine γ-lyase. Structural bases of the enzyme inactivation. Biochimie, 2020, 168:190-197.
    [53] Che YX, Yin S, Wang H, Yang HQ, Xu RX, Wang Q, Wu YP, Boutet J, Huet R, Wang CT. Production of methionol from 3-methylthiopropionaldehyde by catalysis of the yeast alcohol dehydrogenase Adh4p. Journal of Agricultural and Food Chemistry, 2020, 68(16):4650-4656.
    [54] Sreekumar R, Al-Attabi Z, Deeth HC, Turner MS. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine. Letters in Applied Microbiology, 2009, 48(6):777-782.
    [55] Zhang Q, Jia KZ, Xia ST, Xu YH, Liu RS, Li HM, Tang YJ. Regulating Ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1. Scientific Reports, 2016, 6:20828.
    [56] Xu YH, Jia KZ, Tang YJ. Regulatory networks governing methionine catabolism into volatile organic sulfur-containing compounds in Clonostachys rosea. Applied and Environmental Microbiology, 2018, 84(22):e01840-18.
    [57] Hoffman RM, Han QH. Oral methioninase for Covid-19 methionine-restriction therapy. In vivo:Athens, Greece, 2020, 34(3 Suppl):1593-1596.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭菲凡,朱丽雯,周成,张桂敏,贾开志. 微生物源甲硫氨酸γ-裂解酶的研究进展[J]. 微生物学报, 2022, 62(2): 421-433

复制
分享
文章指标
  • 点击次数:675
  • 下载次数: 1804
  • HTML阅读次数: 1584
  • 引用次数: 0
历史
  • 收稿日期:2021-04-22
  • 最后修改日期:2021-06-04
  • 在线发布日期: 2022-01-28
文章二维码