果实红色与黄色番茄品种植株茎部内生细菌群落结构及代谢功能特征
作者:
基金项目:

国家自然科学基金(31860547);广西重点研发计划(桂科AB18221051);广西科技重大专项(AA17204041)


Characteristics of endophytic bacterial community structure and metabolic function in stems of tomatoes between red and yellow varieties
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】比较果实颜色分别为红色和黄色的番茄植株茎部内生细菌群落组成及代谢功能特征,旨在探究番茄果色形成与植株内生细菌的关联,为构建番茄育种新型的评价体系,以及开发利用有益微生物功能提供理论依据和技术支撑。【方法】基于MiSeq高通量测序技术,分析果实颜色分别为红色和黄色番茄品种植株茎部内生细菌群落组成及相关代谢功能生物信息学分析。【结果】果实颜色分别为红色和黄色番茄品种植株茎部中,短状杆菌属(Brachybacterium)、未分类大肠杆菌属(unclassified_f_Enterobacteriaceae)、乳酸杆菌属(Lactobacillus)、棒杆菌属(Corynebacterium)、绿脓杆菌属(Pseudomaonas)、微杆菌属(Microbacterium)、norank_f_norank_o_Gaiellales、褚氏杆菌属(Chujaibacter)、鞘氨醇单胞杆菌属(Sphigomonas)细菌是红色番茄品种植株茎部特有的优势内生细菌属;短小杆菌属(Curtobacterium)、norank_f_Mitochondria、拟无枝酸菌属(Amycolatopsis)和束毛球菌属(Trichococcus)是黄色番茄品种植株茎部特有的优势的内生细菌属。此外,果实颜色为红色的番茄品种植株茎部中,拥有比黄色番茄品种更为丰富的内生细菌属与基因功能。【结论】果实颜色分别为红色和黄色的番茄品种植株茎部,形成了特异的内生细菌群落组成与功能,红色品种拥有比黄色品种更丰富的特有优势内生细菌属与基因功能,番茄果实颜色形成与植株内生细菌的群落组成与功能紧密相关。

    Abstract:

    [Objectives] To provide theoretical basis and technical support for exploiting and utilizing beneficial microbes and their functions, the mechanism of color formation in tomato fruits related to endophytic bacteria in stems of different tomato varieties were analyzed. [Methods] Based on MiSeq high-throughput sequencing technology, informatics analysis of the endophytic bacteria in stems of tomatoes between red and yellow varieties were conducted. [Results] At the genus level, Brachybacterium, unclassified_f_Enterobacteriaceae, Lactobacillus, Corynebacterium, Pseudomaonas, Microbacterium, norank_f_norank_o_Gaiellales, Chujaibacter, Sphigomonas were the specific dominant endophytic bacteria in stems of red tomato varieties; And Curtobacterium, norank_f_Mitochondria, Amycolatopsis and Trichococcus were the specific dominant endophytic bacteria in stems of yellow tomato varieties. Meanwhile, the abundance of endophytic bacteria and their functions in stems of red tomato varieties were higher than those of yellow tomato varieties. [Conclusions] The composition of endophytic bacteria in stems between with red and yellow fruits of tomato varieties formed specific dominant endophytic bacteria, respectively. And higher abundance of specific endophytic bacterial genera and gene functions were found in red fruit tomato varieties than those of the yellow variety. It suggests that the fruit color formations were significantly related to the composition and function of endophytic bacteria in plant.

    参考文献
    [1] Ranc N, Muños S, Santoni S, Causse M. A clarified position for Solanum lycopersicum var. cerasiformein the evolutionary history of tomatoes (Solanaceae). BMC Plant Biology, 2008, 8(1):130.
    [2] 彭浩然, 潘琪, 魏周玲, 蒲运丹, 张永至, 吴根土, 青玲, 孙现超. 番茄抗性相关基因SlHin1的克隆、表达与抗病毒功能. 中国农业科学, 2017, 50(7):1242-1251. Peng HR, Pan Q, Wei ZL, Pu YD, Zhang YZ, Wu GT, Qing L, Sun XC. Cloning, expression and antiviral function analysis of tomato resistance-related gene SlHin1. Scientia Agricultura Sinica, 2017, 50(7):1242-1251. (in Chinese)
    [3] 潘琪, 刘旭旭, 彭浩然, 蒲运丹, 张永至, 叶思涵, 吴根土, 青玲, 孙现超. 番茄SYTA的克隆及表达分析. 中国农业科学, 2017, 50(15):2936-2945. Pan Q, Liu XX, Peng HR, Pu YD, Zhang YZ, Ye SH, Wu GT, Qing L, Sun XC. Cloning, expression analysis of Solanum lycopersicum SYTA. Scientia Agricultura Sinica, 2017, 50(15):2936-2945. (in Chinese)
    [4] Breksa AP, Robertson LD, Labate JA, King BA, King DE. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. Journal of Food Composition and Analysis, 2015, 42:16-25.
    [5] 吴浪, 赵菁菁, 罗佳伟, 王晨, 李方曼, 李云洲, 张颜, 梁燕. 番茄绿果与橙果间果实颜色及主要色素含量的遗传研究. 中国蔬菜, 2017(3):29-37. Wu L, Zhao JJ, Luo JW, Wang C, Li FM, Li YZ, Zhang Y, Liang Y. Studies on inheritance of fruit color and major pigment contents between green and orange of tomato (Lycopersicon esculentum Mill.). China Vegetables, 2017(3):29-37. (in Chinese)
    [6] 刘昕, 陈韵竹, Kim Pyol, Kim Min-Jun, Song Hyondok, 李玉花, 王宇. 番茄果实颜色形成的分子机制及调控研究进展. 园艺学报, 2020, 47(9):1689-1704. Liu X, Chen YZ, Kim P, Kim MJ, Song H, Li YH, Wang Y. Progress on molecular mechanism and regulation of tomato fruit color formation. Acta Horticulturae Sinica, 2020, 47(9):1689-1704. (in Chinese)
    [7] Liu YS, Roof S, Ye ZB, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26):9897-9902.
    [8] Mazzucato A, Willems D, Bernini R, Picarella ME, Santangelo E, Ruiu F, Tilesi F, Soressi GP. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation. Plant Physiology and Biochemistry, 2013, 72:125-133.
    [9] Petric T, Kiferle C, Perata P, Gonzali S. Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS ONE, 2018, 13(10):e0205650.
    [10] 蒲高斌, 刘世琦, 杜洪涛, 刘磊. 光质对番茄果实转色期品质变化的影响. 中国农学通报, 2005, 21(4):176-178, 187. Pu GB, Liu SQ, Du HT, Liu L. Effect of light quality on tomato fruit qualities in turning-color period. Chinese Agricultural Science Bulletin, 2005, 21(4):176-178, 187. (in Chinese)
    [11] Lurie S, Handros A, Fallik E, Shapira R. Reversible inhibition of tomato fruit gene expression at high temperature (effects on tomato fruit ripening). Plant Physiology, 1996, 110(4):1207-1214.
    [12] Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Toki S. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature Plants, 2017, 3(11):866-874.
    [13] Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. The Plant Cell, 2011, 23(3):923-941.
    [14] Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324(5930):1064-1068.
    [15] Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany, 2011, 62(15):5659-5669.
    [16] 翁倩, 周宝利, 于洋, 付亚文. 外源ABA、BR和ETH对番茄果实番茄红素含量的影响. 沈阳农业大学学报, 2007, 38(6):784-787. Weng Q, Zhou BL, Yu Y, Fu YW. Effects of exogenous ABA, BR, ETH on changes of lycopene's contents in fruit of tomato. Journal of Shenyang Agricultural University, 2007, 38(6):784-787. (in Chinese)
    [17] Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany, 2012, 63(16):5751-5761.
    [18] 于洋. 外源GA3和ABA对番茄果实主要色素形成的影响及生理机制研究. 沈阳农业大学博士学位论文, 2016.
    [19] 龙锡, 严希, 洪佳丽, 梁宗锁, 陈海敏. 植物种子内生菌的研究进展. 浙江农业科学, 2016, 57(8):1319-1324. Long X, Yan X, Hong JL, Liang ZS, Chen HM. Research advances on endophytic bacteria of plant seeds. Journal of Zhejiang Agricultural Sciences, 2016, 57(8):1319-1324. (in Chinese)
    [20] Zhang Y, Yu XX, Zhang WJ, Lang DY, Zhang XJ, Cui GC, Zhang XH. Interactions between endophytes and plants:beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. Journal of Plant Biology, 2019, 62(1):1-13.
    [21] Emami S, Alikhani HA, Pourbabaei AA, Etesami H, Sarmadian F, Motessharezadeh B. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, 2019, 26(19):19804-19813.
    [22] Ali S, Charles TC, Glick BR. Endophytic phytohormones and their role in plant growth promotion In:Doty SL (ed). Functional importance of the plant microbiome. Springer, Berlin, 2017:89-105.
    [23] Glick BR. Plant growth-promoting bacteria:mechanisms and applications. Scientifica, 2012, 2012:963401.
    [24] Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany, 2017, 136:68-77.
    [25] Cohen AC, Travaglia CN, Bottini R, Piccoli PN. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 2009, 87(5):455-462.
    [26] Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 2014, 169(1):30-39.
    [27] Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology, 2014, 52(8):689-695.
    [28] 庞师婵, 郭霜, 任奎瑜, 王帅帅, 杨尚东. 番茄/茄子嫁接对其根际土壤生物学性状及细菌群落结构的影响. 园艺学报, 2020, 47(2):253-263. Pang SC, Guo S, Ren KY, Wang SS, Yang SD. Impact of grafting on soil microbial properties and bacterial community structure in tomato rhizosphere. Acta Horticulturae Sinica, 2020, 47(2):253-263. (in Chinese)
    [29] Liang J, Zhang J, Wong MH. Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees, Acacia confusa and Litsea glutinosa. Plant, Cell & Environment, 1996, 19(1):93-100.
    [30] Borel C, Simonneau T. Is the ABA concentration in the sap collected by pressurizing leaves relevant for analysing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA. Journal of Experimental Botany, 2002, 53(367):287-296.
    [31] Simpson EH. Measurement of diversity. Nature, 1949, 163(4148):688.
    [32] Chao A, Wang WH, Chen YC. Estimating the number of shared species in two communities. Statistia Sinica, 2000, 10(1):227-246.
    [33] 孟凡娟, 许向阳, 李景富. 番茄果实色素含量和表面颜色相关性研究. 东北农业大学学报, 2006, 37(4):459-462. Meng FJ, Xu XY, Li JF. Study on correlation of the tomato fruit's pigment content and surface colour. Journal of Northeast Agricultural University, 2006, 37(4):459-462. (in Chinese)
    [34] 阮美颖, 叶青静, 周国治, 王荣青, 姚祝平, 李志邈, 万红建, 杨悦俭. 不同颜色樱桃番茄果实成熟过程中色素的变化. 浙江农业科学, 2013, 54(5):526-528. Ruan MY, Ye QJ, Zhou GZ, Wang RQ, Yao ZP, Li ZM, Wan HJ, Yang YJ. Changes in pigmentation of cherry tomato fruits of different colours during ripening. Journal of Zhejiang Agricultural Sciences, 2013, 54(5):526-528. (in Chinese)
    [35] 豆峻岭, 路绪强, 刘文革, 袁平丽, 赵胜杰, 何楠, 朱红菊, 高磊, 姬万丽. 发育过程中不同倍性西瓜果实番茄红素合成基因表达及内源激素合成差异的研究. 中国瓜菜, 2019, 32(8):157. Dou JL, Lu XQ, Liu WG, Yuan PL, Zhao SJ, He N, Zhu HJ, Gao L, Ji WL. Effect of ploidy level on expression of lycopene biosynthesis genes and accumulation of phytohormones during watermelon (Citrullus lanatus) fruit development and ripening. China Cucurbits and Vegetables, 2019, 32(8):157. (in Chinese)
    [36] Gao HY, Zhu HL, Shao Y, Chen AJ, Lu CW, Zhu BZ, Luo YB. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. Journal of Integrative Plant Biology, 2008, 50(8):991-996.
    [37] 王贵元, 夏仁学. 红肉脐橙果实发育过程中番茄红素、β-胡萝卜素、糖、GA、ABA含量的变化. 园艺学报, 2005, 32(3):482-485. Wang GY, Xia RX. Changes in the contents of lycopene, beta-carotene, sugar and endogenous GA and ABA in flesh during the fruit development of ‘Cara Cara’ Orange. Acta Horticulturae Sinica, 2005, 32(3):482-485. (in Chinese)
    [38] 卢玉秋. 微生物群落对作物生长及植物激素的影响. 中国农业科学院硕士学位论文, 2019.
    [39] Feng J, Jiang LL, Zhang JL, Zheng H, Sun YF, Chen SN, Yu ML, Hu W, Shi DF, Sun XH, Lu HF. Nondestructive determination of soluble solids content and pH in red bayberry (Myrica rubra) based on color space. Journal of Food Science and Technology, 2020, 57(12):4541-4550.
    [40] 张勇, 吴刚, 杨宝玉, 陈士云, 宋冬林. 一株产类胡萝卜素细菌的分离与鉴定. 水生生物学报, 2005, 29(2):206-209. Zhang Y, Wu G, Yang BY, Chen SY, Song DL. Isolation and identification of one carotenoid-producing bacterium. Acta Hydrobiologica Sinica, 2005, 29(2):206-209. (in Chinese)
    [41] 陈亚淑, 汪荣, 谢笔钧, 杨季芳, 陈吉刚, 孙智达. 北极海洋红球菌(Rhodococcus sp.) B7740产类胡萝卜素的提取条件优化及甲基萘醌类类胡萝卜素鉴定. 食品科学, 2016, 37(2):25-30. Chen YS, Wang R, Xie BJ, Yang JF, Chen JG, Sun ZD. Optimization of extraction of carotenoids and identification of menaquinone carotenoids from Rhodococcus sp. B7740. Food Science, 2016, 37(2):25-30. (in Chinese)
    [42] Giuffrida D, Monnet C, Laurent F, Cacciola F, Oteri M, Le Piver M, Caro Y, Donato P, Mondello L, Roueyre D, Dufossé L. Carotenoids from the ripening bacterium Brevibacterium linens impart color to the rind of the French cheese, Fourme de Montbrison (PDO). Natural Product Research, 2020, 34(1):10-15.
    [43] Wang ZB, Sun JX, Yang Q, Yang JM. Metabolic engineering Escherichia coli for the production of lycopene. Molecules, 2020, 25(14):3136.
    [44] Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany, 2012, 63(16):5751-5761.
    [45] Jiang LF, Song MK, Yang L, Zhang DY, Sun YT, Shen ZG, Luo CL, Zhang G. Exploring the influence of environmental factors on bacterial communities within the rhizosphere of the Cu-tolerant plant, Elsholtzia splendens. Scientific Reports, 2016, 6:36302.
    [46] 谢红炼, 汪汉成, 蔡刘体, 周浩, 刘畅, 陆宁, 史彩华, 王香萍. 烟草种子内生细菌群落结构与多样性. 微生物学报, 2020, 60(3):601-616. Xie HL, Wang HC, Cai LT, Zhou H, Liu C, Lu N, Shi CH, Wang XP. Community structure and diversity of endophytic bacteria of tobacco seeds. Acta Microbiologica Sinica, 2020, 60(3):601-616. (in Chinese)
    [47] 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测. 草业学报, 2021, 30(3):54-67. Ma X, Luo ZZ, Zhang YQ, Liu JH, Niu YN, Cai LQ. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau. Acta Prataculturae Sinica, 2021, 30(3):54-67. (in Chinese)
    [48] Wu ZX, Hao ZP, Sun YQ, Guo LP, Huang LQ, Zeng Y, Wang Y, Yang L, Chen BD. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng. Applied Soil Ecology, 2016, 107:99-107.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈思宇,孙妍,肖健,赵天义,杨尚东. 果实红色与黄色番茄品种植株茎部内生细菌群落结构及代谢功能特征[J]. 微生物学报, 2022, 62(2): 602-616

复制
相关视频

分享
文章指标
  • 点击次数:401
  • 下载次数: 1793
  • HTML阅读次数: 1244
  • 引用次数: 0
历史
  • 收稿日期:2021-04-27
  • 最后修改日期:2021-06-01
  • 在线发布日期: 2022-01-28
文章二维码