石油污染环境中固氮和寡氮营养细菌的分离鉴定及其特性
作者:
基金项目:

国家自然科学基金(41977198)


Identification and characteration of nitrogen-fixing bacteria and oligotrophic-nitrogen bacteria from the polluted petroleum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】石油污染治理中的生物修复因无二次污染、处理成本低等优点受到人们的广泛关注,但由于石油烃向环境中大量输入,导致环境中氮源的相对不足成为制约生物修复效率的关键因素之一,因此筛选能够适应寡氮环境的微生物具有重要的生态意义。【目的】从辽河油田油藏水中筛选在不添加氮源培养基中生长的微生物,为石油污染环境生物修复提供候选菌株。【方法】利用改良无氮培养基分离菌株,根据16S rRNA基因序列同源性鉴定菌株,并对其进行固氮酶活性分析、固氮基因和石油降解基因扩增。【结果】筛选得到21株菌,分属于16个不同的属,其中假单胞菌属所占比例最高(23.8%)。固氮酶活性分析结果表明,8株细菌可检测到乙炔还原活性,从3株菌株中扩增到固氮基因nifH,其余13株细菌被鉴定为寡氮营养菌(oligotrophic-nitrogen bacteria)。对21株菌株的石油降解相关基因进行扩增,发现5株菌株基因组中具有烷烃单加氧酶基因alkB或细胞色素P450基因。【结论】本研究从辽河油田油藏水中分离到的细菌适应寡氮环境,具备降解石油潜能,丰富了石油污染地区的微生物多样性,为生物修复提供菌种基础。

    Abstract:

    Bioremediation in petroleum pollution has attracted wide attention due to its advantages including no secondary pollution and low cost. However, due to the large input of petroleum hydrocarbons into the environment, the relative shortage of nitrogen sources in the environment has become one of the key factors that restricted the efficiency of bioremediation. Therefore, screening microorganisms that can grow in the oligotrophic-nitrogen environments has important ecological significance. [Objective] To screen microorganisms that can grow on nitrogen-free conditions from the Liaohe Oilfield reservoir, and to provide candidate strains for the bioremediation of petroleum- contaminated environments. [Methods] The strains were isolated using modified nitrogen-free medium, followed by the analysis of 16S rRNA gene sequence and nitrogenase activity, and amplication of nitrogen fixation genes and petroleum degradation genes. [Results] 21 microorganisms were screened, belonging to 16 different genera, among which Pseudomonas accounted for the highest proportion. The analysis of nitrogenase activity showed that 8 microorganisms could detect acetylene reduction activity, 3 microorganisms successfully amplified the nitrogen-fixing gene nifH, and the remaining 13 microorganisms defined them as oligotrophic-nitrogen bacteria. Amplification of petroleum degradation-related genes in these 21 strains revealed that 5 strains have alkB monooxygenase genes or cytochrome P450 genes in their genomes. [Conclusion] The bacteria isolated from the reservoir water of the Liaohe Oilfield in this study can adapt to the oligo-nitrogen environment, coupled with the potential to degrade oil. This study enrichs the microbial diversity in oil-contaminated areas and provide bacterial foundation for microbial remediation.

    参考文献
    [1] Vieira PA, Vieira RB, De Franca FP, Cardoso VL. Biodegradation of effluent contaminated with diesel fuel and gasoline. Journal of Hazardous Materials, 2007, 140(1):52-59.
    [2] Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 2003, 67(4):503-549.
    [3] Simister R, Taylor MW, Rogers KM, Schupp PJ, Deines P. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. FEMS Microbiology Ecology, 2013, 85(1):195-205.
    [4] Brody TM, Bianca PD, Krysa J. Analysis of inland crude oil spill threats, vulnerabilities, and emergency response in the Midwest United States. Risk Analysis, 2012, 32(10):1741-1749.
    [5] MacNaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC. Microbial population changes during bioremediation of an experimental oil spill. Applied and Environmental Microbiology, 1999, 65(8):3566-3574.
    [6] Hassanshahian M, Amirinejad N, Behzadi MA. Crude oil pollution and biodegradation at the Persian Gulf:a comprehensive and review study. Journal of Environmental Health Science and Engineering, 2020, 18(2):1415-1435.
    [7] Zhang ZE, Yan YF, Zhang L, Ju SX. Hollow fiber membrane contactor absorption of CO2 from the flue gas:review and perspective. Global Nest Journal, 2014, 16(2):354-373.
    [8] Sood N, Lal B. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions. Journal of Environmental Management, 2009, 90(5):1728-1736.
    [9] Hong Q, Dong XJ, He LJ, Jiang X, Li SP. Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster. International Biodeterioration and Biodegradation, 2009, 63(4):365-370.
    [10] 刘媚媚, 金腊华, 李文松, 贾雅漪. 一株石油降解菌的活性炭纤维固定化研究. 环境污染与防治, 2009, 31(10):48-51. Liu MM, Jin LH, Li WS, Jia YY. Study on immobilization of an oil-degrading strain a on activted carbon fiber. Environmental Pollution and Control, 2009, 31(10):48-51. (in Chinese)
    [11] Kiamarsi Z, Soleimani M, Nezami A, Kafi M. Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. International Journal of Environmental Science and Technology, 2019, 16(11):6805-6816.
    [12] 沈聪, 刘爽, 王春霞, 严雪梅, 代金霞. 盐池采油区污染土壤石油降解菌的筛选鉴定及其降解特性研究. 生物技术通报, 2021, 37(6):1-9. Shen C, Liu S, Wang CX, Yan XM, Dai JX. Screening, identification and characteristics of petroleum degrading bacteria from contaminated soil of Yanchi Aera. Biotechnology bulletin, 2021, 37(6):1-9. (in Chinese)
    [13] Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiology Reviews, 1990, 54(3):305-315.
    [14] Sun XX, Chu LN, Mercando E, Romero I, Hollander D, Kostka JE. Dispersant enhances hydrocarbon degradation and alters the structure of metabolically active microbial communities in shallow seawater from the Northeastern Gulf of Mexico. Frontiers in Microbiology, 2019, 10:2387.
    [15] Al-Mailem DM, Eliyas M, Radwan SS. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles, 2013, 17(3):463-470.
    [16] Onwurah IN. Role of diazotrophic bacteria in the bioremediation of crude oil-polluted soil. Journal of Chemical Technology and Biotechnology, 1999, 74(10):957-964.
    [17] Radwan S, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation. Microbial ecology, 2010, 60(2):354-363.
    [18] Eckford R, Cook FD, Saul D, Aislabie J, Foght J. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Applied and Environmental Microbiology, 2002, 68(10):5181-5185.
    [19] Karthikeyan S, Rodriguez-R LM, Heritier-Robbins P, Kim M, Overholt WA, Gaby JC, Hatt JK, Spain JC, Rosselló-Móra R, Huettel M, Kostka JE, Konstantinidis KT. "Candidatus Macondimonas diazotrophica", a novel gammaproteobacterial genus dominating crude-oil-contaminated coastal sediments. The ISME Journal, 2019, 13(8):2129-2134.
    [20] Naseri M, Barabadi A, Barabady J. Bioremediation treatment of hydrocarbon-contaminated Arctic soils:influencing parameters. Environmental Science and Pollution Research, 2014, 21(19):11250-11265.
    [21] Lane DJ. 16S/23S rRNA sequencing. In:Stackebrandt E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic, New York, John Wiley and Sons, 1991, 115-175.
    [22] Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [23] Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 2001, 152(1):95-103.
    [24] Wang LP, Wang WP, Lai QL, Shao ZZ. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environmental Microbiology, 2010, 12(5):1230-1242.
    [25] 徐玉泉, 方宣钧, 陈明, 张维, 李浚明, 林敏. 采用苯酚羟化酶基因特异引物检测苯酚降解菌. 微生物学报, 2001, 41(3):298-303. Xu YQ, Fang XJ, Chen M, Zhang W, Li JM, Lin M. The detection of phenol degrading strain in environment with specific primer of phenol hydroxylase gene. Acta Microbiologica Sinica, 2001, 41(3):298-303. (in Chinese)
    [26] 陈琳. 石油污染土壤高效固氮菌筛选及其作用机理的探索. 中国农业大学硕士学位论文, 2018.
    [27] Wang WP, Shao ZZ. Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiology Ecology, 2012, 80(3):523-533.
    [28] 张晶, 张惠文, 李新宇, 苏振成, 张成刚. 土壤微生物生态过程与微生物功能基因多样性. 应用生态学报. 2006, 17(6):1129-1132. Zhang J, Zhang HW, Li XY, Su ZC, Zhang CG. Soil microbial ecological process and microbial functional gene diversity. Chinese Journal of Applied Ecology, 2006, 17(6):1129-1132. (in Chinese)
    [29] 路莹. 浅层地下水系统石油类污染物的生物降解机制研究. 吉林大学博士学位论文, 2013.
    [30] Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review. Frontiers in Microbiology, 2016, 7:1369.
    [31] Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresource Technology, 2017, 232:389-397.
    [32] Aronstein BN, Alexander M. Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Applied Microbiology and Biotechnology, 1993, 39(3):386-390.
    [33] Al-Hawash AB, Dragh MA, Li SE, Alhujaily A, Abbood HA, Zhang XY, Ma FY. Principles of microbial degradation of petroleum hydrocarbons in the environment. The Egyptian Journal of Aquatic Research, 2018, 44(2):71-76.
    [34] Renga Thavasi T, Jayalakshmi S, Thangavel B, Banat I. Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. Journal of Biology Environmental Science, 2007, 1(2):51-57.
    [35] 张雅茜. 石油污染环境中寡氮营养菌的分离鉴定及适应机制初探. 中国农业大学硕士论文, 2020.
    [36] Dolatabadian A, Modarres Sanavy SAM, Ghanati F, Gresshoff PM. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World Journal of Microbiology and Biotechnology, 2013, 29(7):1327-1339.
    [37] Karasev ES, Andronov EE, Aksenova TS, Chizhevskaya EP, Tupikin AE, Provorov NA. Evolution of goat's rue rhizobia (Neorhizobium galegae):analysis of polymorphism of the nitrogen fixation and nodule formation genes. Russian Journal of Genetics, 2019, 55(2):263-266.
    [38] Fox AR, Soto G, Valverde C, Russo D, Lagares Jr A, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado- Blanco J, Dixon R, Ayub ND. Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environmental Microbiology, 2016, 18(10):3522-3534.
    [39] Doolittle M, Raina A, Lax A, Boopathy R. Presence of nitrogen fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus). Bioresource Technology, 2008, 99(8):3297-3300.
    [40] Chaudhary DK, Dahal RH, Kim DU, Kim J. Novosphingobium olei sp. nov., with the ability to degrade diesel oil, isolated from oil-contaminated soil and proposal to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(2). DOI:10.1099/ijsem.0.004628.
    [41] Wang Y, Wang QY, Liu LM. Crude oil degrading fingerprint and the overexpression of oxidase and invasive genes for n-hexadecane and crude oil degradation in the Acinetobacter pittii H9-3 strain. International Journal of Environmental Research and Public Health, 2019, 16(2):188.
    [42] Wang XX, Jin DC, Zhou LS, Zhang Z. Draft genome sequence of Pannonibacter phragmitetus strain CGMCC9175, a halotolerant polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announcements, 2016, 4(1). DOI:10.1128/genomea. 01675-15.
    [43] Bali A, Blanco G, Hill S, Kennedy C. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Applied and Environmental Microbiology, 1992, 58(5):1711-1718.
    [44] Hu B, Wang MX, Geng S, Wen LQ, Wu MD, Nie Y, Tang YQ, Wu XL. Metabolic exchange with non-alkane-consuming Pseudomonas stutzeri SLG510A3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. strain DQ12-45-1b. Applied and Environmental Microbiology, 2020, 86(8). DOI:10.1128/aem.02931-19.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李方玲,张雅坤,梁立宝,王小通,杜显元,王磊. 石油污染环境中固氮和寡氮营养细菌的分离鉴定及其特性[J]. 微生物学报, 2022, 62(2): 661-671

复制
分享
文章指标
  • 点击次数:442
  • 下载次数: 1219
  • HTML阅读次数: 1464
  • 引用次数: 0
历史
  • 收稿日期:2021-05-29
  • 最后修改日期:2021-06-25
  • 在线发布日期: 2022-01-28
文章二维码