园林植物女贞不同生态位细菌群落结构及其多样性
作者:
基金项目:

中央级公益性科研院所基本科研业务费专项(CAFYBB2019SZ005,CAFYBB2017ZB005)


Structure and diversity of bacterial community in different niches of garden plant Ligustrum lucidum Ait.
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】女贞是我国分布广泛的园林绿化树种、药用植物和资源昆虫白蜡虫的优良寄主植物,解析女贞叶、茎、根、根际土壤4种生态位的细菌群落结构、物种组成和多样性特征,为研究女贞及其相关微生物组的互作及开发利用女贞内生和根际细菌资源奠定基础。【方法】以女贞叶、茎、根、根际土壤为研究材料,基于细菌16S rRNA基因V5–V7区,通过Illumina MiSeq扩增子高通量测序和生物信息学分析,比较女贞不同生态位细菌群落结构、物种组成、功能的差异性和相似性。【结果】女贞4种样本共获得168 229条有效序列,聚类后共计977个OTU,归属于23门,54纲,138目,227科和399属。不同生态位细菌群落多样性从根际土壤到根、茎、叶自下而上逐渐降低,Shannon指数分别为4.514、3.856、2.704和1.908。β-多样性分析表明,女贞4种生态位细菌群落结构存在显著差异(R=0.842 6,P<0.05),而叶与茎(R=0.481 5,P>0.05)、根与根际土壤(R=0.888 9,P>0.05)的细菌群落结构相对较为相似。在物种组成上,根、茎和叶内生细菌群落中相对丰度较高的为变形菌门和放线菌门,根际土壤中相对丰度较高的为绿弯菌门;在属水平上,女贞核心菌群主要包括红球菌属、马赛菌属、鞘氨醇单胞菌属、伯克氏菌属、慢生根瘤菌属和热酸菌属,其中伯克氏菌属、慢生根瘤菌属等为植物益生菌资源。功能预测结果显示,不同生态位细菌群落的功能以化能异养为主,地上部分(叶、茎)菌群主要在碳、氢循环中发挥作用,而地下部分(根和根际土壤)菌群主要行使与氮循环相关的功能。【结论】女贞不同生态位的细菌群落多样性自下而上呈现过滤选择机制,不同样本细菌群落结构生态位分化特征明显,在物种组成上存在植物区室特异性。女贞相关微生物群中存在多种植物益生菌,值得进一步研究和开发利用。

    Abstract:

    [Objective] Ligustrum lucidum Ait., a plant with landscaping and medical values as well as an excellent host plant for the resource insect Ericerus pela, is widely distributed in China. This study aims to investigate the community structure, species composition, and diversity of bacteria in four niches (leaf, stem, root, and rhizosphere soil) of L. lucidum, and to lay a foundation for the interaction between L. lucidum and its associated microbiota, so as to provide a scientific basis for exploiting and utilizing endophytic and rhizospheric bacterial resources. [Methods] The leaf, stem, root, and rhizosphere soil samples of L. lucidum were collected, and the V5-V7 region of bacterial 16S rRNA gene was sequenced with the Illumina MiSeq platform. The bacterial community structure, species composition, and function in different niches were compared with bioinformatics tools. [Results] The high-throughput sequencing generated 168 229 valid sequences for the four samples of L. lucidum. A total of 977 OTUs were annotated, belonging to 23 phyla, 54 classes, 138 orders, 227 families, and 399 genera. The bacterial community diversity decreased gradually in the order of rhizosphere soil, root, stem, and leaf, with the Shannon indexes of 4.514, 3.856, 2.704, and 1.908, respectively. The β-diversity analysis indicated that there were significant differences in bacterial community structure among four niches (R=0.842 6, P<0.05). The bacterial community structure was similar between leaf and stem (R=0.481 5, P>0.05) as well as between root and rhizosphere soil (R=0.888 9, P>0.05). At the level of phylum, Proteobacteria and Actinobacteriota were dominant in leaf, stem, and root, while Chloroflexi had the highest relative abundance in rhizosphere soil. The dominant genera mainly included Rhodococcus, Massilia, Sphingomonas, Burkholderia, Bradyrhizobium, and Acidothermus, some of which, like Bradyrhizobium and Burkholderia, were plant probiotics. Chemoheterotrophy was the predominant function in each niche. The bacterial community in the aboveground part (leaf and stem) mainly played a role in carbon and hydrogen cycle, while that in the underground part (root and rhizosphere soil) mainly played a role in nitrogen cycle. [Conclusion] The bacterial community diversity in different niches of L. lucidum showed a selective filtration mechanism from bottom to top. The niche differentiation of bacterial community structure was obvious in different samples, and plant compartment specificity existed in species composition. There were a variety of plant probiotics in L. lucidum-associated microbiota, which were worthy of further study and utilization.

    参考文献
    [1] Vandermeer JH. Niche theory. Annual Review of Ecology and Systematics, 1972, 3(1):107-132.
    [2] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
    [3] Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytologist, 2015, 206(4):1196-1206.
    [4] Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. The hidden world within plants:ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 2015, 79(3):293-320.
    [5] Gunatilaka AA. Natural products from plant-associated microorganisms:distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 2006, 69(3):509-526.
    [6] Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 2014, 27:30-37.
    [7] Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8):478-486.
    [8] Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots:the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11(11):789-799.
    [9] Wei Z, Jousset A. Plant breeding goes microbial. Trends in Plant Science, 2017, 22(7):555-558.
    [10] Ryan PR, Dessaux Y, Thomashow LS, Weller DM. Rhizosphere engineering and management for sustainable agriculture. Plant and Soil, 2009, 321(1/2):363-383.
    [11] 朱永官, 彭静静, 韦中, 沈其荣, 张福锁. 土壤微生物组与土壤健康. 中国科学:生命科学, 2021, 51(1):1-11. Zhu YG, Peng JJ, Wei Z, Shen QR, Zhang FS. Linking the soil microbiome to soil health. Scientia Sinica:Vitae, 2021, 51(1):1-11. (in Chinese)
    [12] Wang HX, Shi H, Wang YH. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. The Scientific World Journal, 2015, 2015:935942.
    [13] Zhou J, Zhang ZP, Zhang YC, Wei Y, Jiang ZP. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 2018, 13(3):e0191139.
    [14] 陈勇, 陈晓鸣, 王自力, 叶寿德, 王绍云, 毛玉芬. 白蜡虫泌蜡研究Ⅱ.不同寄主植物上的泌蜡比较. 林业科学研究, 1998, 11(3):285-288. Chen Y, Chen XM, Wang ZL, Ye SD, Wang SY, Mao YF. Studies on secreting wax of Chinese white wax scale Ⅱ. The comparison of secreting wax on different host plants. Forest Research, 1998, 11(3):285-288. (in Chinese)
    [15] Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK. Plant-microbiome interactions:from community assembly to plant health. Nature Reviews Microbiology, 2020, 18(11):607-621.
    [16] Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528(7582):364-369.
    [17] De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, González-Guerrero M, De Araújo LM, Verza NC, Bagheri HC, Imperial J, Arruda P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 2016, 6:28774.
    [18] Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW. The Populus holobiont:dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6(1):31.
    [19] Chen PL, Zhao ML, Tang F, Hu YM, Peng XJ, Shen SH. The effect of plant compartments on the Broussonetia papyrifera-associated fungal and bacterial communities. Applied Microbiology and Biotechnology, 2020, 104(8):3627-3641.
    [20] 顾美英, 古丽尼沙·沙依木, 张志东, 朱静, 刘晓静, 唐琦勇, 欧提库尔·玛合水提, 宋素琴, 冯雷, 唐光木, 徐万里. 黑果枸杞不同组织内生细菌群落多样性. 微生物学报, 2021, 61(1):152-166. Gu MY, Gulinisha SYM, Zhang ZD, Zhu J, Liu XJ, Tang QY, Outikuer M, Song SQ, Feng L, Tang GM, Xu WL. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr.. Acta Microbiologica Sinica, 2021, 61(1):152-166. (in Chinese)
    [21] 王健敏, 刘娟, 陈晓鸣, 杨子祥, 梁军生. 昆明金殿林区云南松次生林健康状况与土壤相关性分析. 林业科学研究, 2009, 22(6):865-871. Wang JM, Liu J, Chen XM, Yang ZX, Liang JS. Correlation between health conditions of Pinus yunnanensis secondary forest and soil properties in golden temple forest region of Kunming. Forest Research, 2009, 22(6):865-871. (in Chinese)
    [22] Chen SF, Zhou YQ, Chen YR, Gu J. Fastp:an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics:Oxford, England, 2018, 34(17):i884-i890.
    [23] Magoc T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [24] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10):996-998.
    [25] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
    [26] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
    [27] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12(6):R60.
    [28] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):E911-E920.
    [29] Xiao X, Chen WM, Zong L, Yang J, Jiao S, Lin YB, Wang ET, Wei GH. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Molecular Ecology, 2017, 26(6):1641-1651.
    [30] Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota:systems-level insights and perspectives. Annual Review of Genetics, 2016, 50:211-234.
    [31] Bulgarelli D, Rott M, Schlaeppi K, Ver Loren Van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488(7409):91-95.
    [32] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展. 微生物学报, 2021, 61(2):231-248. Liu JW, Li XZ, Yao MJ. Research progress on assembly of plant rhizosphere microbial community. Acta Microbiologica Sinica, 2021, 61(2):231-248. (in Chinese)
    [33] Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK. Field study reveals core plant microbiota and relative importance of their drivers. Environmental Microbiology, 2018, 20(1):124-140.
    [34] 沙月霞. 不同水稻组织内生细菌的群落多样性. 微生物学报, 2018, 58(12):2216-2228. Sha YX. Diversity of bacterial endophytic community in different rice tissues. Acta Microbiologica Sinica, 2018, 58(12):2216-2228. (in Chinese)
    [35] Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Environmental Microbiology, 2011, 77(17):5934-5944.
    [36] Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environmental Microbiology Reports, 2019, 11(2):185-195.
    [37] Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN:from the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology, 2008, 63(1):84-93.
    [38] Astudillo-García C, Bell JJ, Webster NS, Glasl B, Jompa J, Montoya JM, Taylor MW. Evaluating the core microbiota in complex communities:a systematic investigation. Environmental Microbiology, 2017, 19(4):1450-1462.
    [39] Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the core microbiota be functional. Trends in Plant Science, 2017, 22(7):583-595.
    [40] Hacquard S. Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 2016, 209(2):454-457.
    [41] Shade A, Handelsman J. Beyond the Venn diagram:the hunt for a core microbiome. Environmental Microbiology, 2012, 14(1):4-12.
    [42] Williams RJ, Howe A, Hofmockel KS. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology, 2014, 5:358.
    [43] Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 2014, 14(1):1-12.
    [44] Qin Y, Druzhinina IS, Pan XY, Yuan ZL. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 2016, 34(7):1245-1259.
    [45] Dodd IC, Zinovkina NY, Safronova VI, Belimov AA. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 2010, 157(3):361-379.
    [46] Piromyou P, Greetatorn T, Teamtisong K, Tittabutr P, Boonkerd N, Teaumroong N. Potential of rice stubble as a reservoir of bradyrhizobial inoculum in rice-legume crop rotation. Applied and Environmental Microbiology, 2017, 83(22):e01488-17.
    [47] Baldani VLD, Baldani JI, Döbereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, 2000, 30(5):485-491.
    [48] Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(8):2514-2519.
    [49] Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Applied Microbiology and Biotechnology, 2019, 103(3):1069-1080.
    [50] 杨恩东, 崔丹曦, 汪维云. 马赛菌属细菌研究进展. 微生物学通报, 2019, 46(6):1537-1548. Yang ED, Cui DX, Wang WY. Research progress on the genus Massilia. Microbiology China, 2019, 46(6):1537-1548. (in Chinese)
    [51] 马爱芝, 武俊, 汪婷, 张国顺, 李顺鹏. 六六六(HCH)降解菌Sphingomonas sp. BHC-A的分离与降解特性的研究. 微生物学报, 2005, 45(5):728-732. Ma AZ, Wu J, Wang T, Zhang GS, Li SP. Isolation and characterization of a HCH degradation Sphingomanas sp. stain BHC-A. Acta Microbiologica Sinica, 2005, 45(5):728-732. (in Chinese)
    [52] Pan FS, Meng Q, Wang Q, Luo S, Chen B, Khan KY, Yang XE, Feng Y. Endophytic bacterium Sphingomonas SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in Sedum alfredii Hance. Chemosphere, 2016, 154:358-366.
    [53] Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Gutiérrez-Sánchez G, Volke-Sepúlveda T. An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd:a proteomic approach. Science of the Total Environment, 2018, 625:762-774.
    [54] He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation:mechanisms and current application strategies for soil mixed pollutants. Critical Reviews in Biotechnology, 2020, 40(1):31-45.
    [55] 申建波, 白洋, 韦中, 储成才, 袁力行, 张林, 崔振岭, 丛汶峰, 张福锁. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新. 土壤学报, 2021, 58(4):805-813. Shen JB, Bai Y, Wei Z, Chu CC, Yuan LX, Zhang L, Cui ZL, Cong WF, Zhang FS. Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources, environment, and food security. Acta Pedologica Sinica, 2021, 58(4):805-813. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李斌,史鸿翔,刘兰兰,张欣,杨璞,陈航,冯颖,陈晓鸣. 园林植物女贞不同生态位细菌群落结构及其多样性[J]. 微生物学报, 2022, 62(2): 686-702

复制
分享
文章指标
  • 点击次数:444
  • 下载次数: 1080
  • HTML阅读次数: 1158
  • 引用次数: 0
历史
  • 收稿日期:2021-05-26
  • 最后修改日期:2021-09-04
  • 在线发布日期: 2022-01-28
文章二维码