葛仙米多糖对高脂小鼠血脂和肠道微生物的影响
作者:
基金项目:

北京联合大学与湖南炎帝生物工程有限公司合作项目(12A803720)


Effects of Nostoc sphaeroids Kütz polysaccharide on blood lipid and gut microflora in high-fat diet mice
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】研究葛仙米多糖对高脂饲料喂养小鼠血脂和肠道微生物的影响。【方法】将健康的8周龄雄性小鼠分成5组,每组10只:正常组C57/6CNC小鼠(N:灌胃生理盐水,喂饲标准饲料),对照组ApoE-/-小鼠(C:灌胃生理盐水,喂饲标准饲料),模型组ApoE-/-小鼠(M:灌胃生理盐水,喂饲高脂高胆固醇饲料),葛仙米多糖低剂量组ApoE-/-小鼠(L:灌胃葛仙米多糖0.4 g/kg BW,喂饲高脂高胆固醇饲料)以及葛仙米多糖高剂量组ApoE-/-小鼠(H:灌胃葛仙米多糖0.8 g/kg BW,喂饲高脂高胆固醇饲料)。试验为期22周。试验结束后,采集血清、肝脏和结肠组织、盲肠内容物样本利用生化分析仪测定血脂含量,HE染色观察组织结构,油红O染色观测肝脏脂肪沉积程度,16S rRNA基因高通量测序和生物信息处理技术分析盲肠内容物中肠道菌群的多样性和组成结构。【结果】葛仙米多糖降低了高脂高胆固醇饲料喂养小鼠的血脂,减少了肝脏组织的脂肪沉积,改善了肠道微生物的多样性和丰富度。【结论】膳食给予葛仙米多糖可改善高脂小鼠的脂代谢,调节肠道微生态平衡。

    Abstract:

    [Objective] To study the effects of Nostoc sphaeroids Kütz polysaccharide (NSKP) on blood lipid and gut microflora in high fat diet mice.[Methods] The healthy 8-week-old male mice were assigned into 5 groups, with 10 mice in each group. The normal group included the C57/6CNC mice administrated with normal saline by gavaged with standard diet, and the control group consisted of ApoE-/- mice administrated with normal saline by gavaged with standard diet. The model group consisted of the ApoE-/- mice administrated with normal saline by gavage and fed with high-fat and high-cholesterol diet. The ApoE-/- mice in the low-dose and high-dose NSKP groups were fed with high-fat and high-cholesterol diet and received 0.4 g/kg and 0.8 g/kg BW NSKP, respectively. The experiment lasted for 22 weeks, and then the serum, liver, colon tissue, and cecal contents samples were collected from the mice. Serum lipid level was measured by the biochemical analyzer. The tissue structure and fat deposition were observed via HE staining and oil red O staining, respectively. The diversity and composition of gut microflora in cecal contents were analyzed by 16S rRNA gene high-throughput sequencing and bioinformatics tools.[Results] NSKP reduced the serum lipid level and fat deposition in liver tissue, and improved the diversity and relative abundance of gut microflora in high-fat diet mice.[Conclusion] NSKP can improve lipid metabolism and regulate gut microecological balance in high-fat diet mice.

    参考文献
    [1] 郭丽璇, 胡琼英, 熊大迁. 肠道菌群调控2型糖尿病发生发展的研究进展. 实用医学杂志, 2020, 36(9):1142-1147. Guo LX, Hu QY, Xiong DQ. Research progresses of intestinal flora regulating the occurrence and the development of type 2 diabetes mellitus. The Journal of Practical Medicine, 2020, 36(9):1142-1147. (in Chinese)
    [2] Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota:next frontier in understanding human health and development of biotherapeutics. Biologics:Targets & Therapy, 2011, 5:71-86.
    [3] Fluitman KS, de Clercq NC, Keijser BJF, Visser M, Nieuwdorp M, IJzerman RG. The intestinal microbiota, energy balance, and malnutrition:emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology & Metabolism, 2017, 12(3):215-226.
    [4] Chen L, Zhang LY, Wang WD, Qiu W, Liu L, Ning AH, Cao J, Huang M, Zhong MT. Polysaccharides isolated from Cordyceps sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet. PLoS One, 2020, 15(6):e0232972.
    [5] 耿妍, 鲁晓岚, 耿燕, 史海涛. 肠道菌群紊乱在大鼠非酒精性脂肪肝中的作用机制. 分子诊断与治疗杂志, 2020, 12(12):1626-1630. Geng Y, Lu XL, Geng Y, Shi HT. Mechanism of intestinal flora disturbance in nonalcoholic fatty liver disease in rats. Journal of Molecular Diagnostics and Therapy, 2020, 12(12):1626-1630. (in Chinese)
    [6] Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One, 2012, 7(10):e47713.
    [7] Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6):1332-1345.
    [8] 李文敏, 高凯. 2014-2017年我国居民代谢综合征患病率的meta分析. 慢性病学杂志, 2018, 19(11):1476-1480. Li WM, Gao K. The prevalence of metabolic syndrome in China from 2014 to 2017:a meta-analysis. Chronic Pathematology Journal, 2018, 19(11):1476-1480. (in Chinese)
    [9] Wei FF, Liu YL, Bi CC, Zhang B. Nostoc sphaeroids Kütz powder ameliorates diet-induced hyperlipidemia in C57BL/6j mice. Food & Nutrition Research, 2019, 63:3618.
    [10] Li HF, Su LN, Chen S, Zhao LB, Wang HY, Ding F, Chen H, Shi RN, Wang YL, Huang ZB. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga Nostoc sphaeroides. Molecules:Basel, Switzerland, 2018, 23(2):508.
    [11] Liu YF, Su PF, Xu JF, Chen S, Zhang JS, Zhou S, Wang YT, Tang QJ, Wang YL. Structural characterization of a bioactive water-soluble heteropolysaccharide from Nostoc sphaeroids Kütz. Carbohydrate Polymers, 2018, 200:552-559.
    [12] 刘银路, 毕萃萃, 魏芬芬, 陈盛, 王玉兰, 张波. 葛仙米对大鼠的润肠通便作用研究. 食品工业科技, 2020, 41(16):292-296. Liu YL, Bi CC, Wei FF, Chen S, Wang YL, Zhang B. Effect of Nostoc sphaeroides on laxative in rats. Science and Technology of Food Industry, 2020, 41(16):292-296. (in Chinese)
    [13] Liu YL, Yang LT, Bi CC, Tang K, Zhang B. Nostoc sphaeroides Kütz polysaccharide improved constipation and promoted intestinal motility in rats. Evidence-Based Complementary and Alternative Medicine, 2021, 2021:5596531.
    [14] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics:Oxford, England, 2011, 27(21):2957-2963.
    [15] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [16] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [17] Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19):2460-2461.
    [18] Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 2009, 137(5):1716-1724.e2.
    [19] Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T. High-fat diet alters gut microbiota physiology in mice. The ISME Journal, 2014, 8(2):295-308.
    [20] 李天翔, 李素娟, 郝祥宇, 祝志波, 郭建强. 肠道菌群及代谢与载脂蛋白E在动脉粥样硬化中的相互作用. 中国微生态学杂志, 2020, 32(9):993-997. Li TX, Li SJ, Hao XY, Zhu ZB, Guo JQ. Intestinal flora and metabolism interact with apolipoprotein in atherosclerosis. Chinese Journal of Microecology, 2020, 32(9):993-997. (in Chinese)
    [21] Nehra V, Allen JM, Mailing LJ, Kashyap PC, Woods JA. Gut microbiota:modulation of host physiology in obesity. Physiology:Bethesda, Md, 2016, 31(5):327-335.
    [22] Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529(7585):212-215.
    [23] 方倩. 葛仙米对小鼠生长和免疫功能的影响. 河南师范大学硕士学位论文, 2015.
    [24] Ninomiya M, Satoh H, Yamaguchi Y, Takenaka H, Koketsu M. Antioxidative activity and chemical constituents of edible terrestrial alga Nostoc commune vauch. Bioscience, Biotechnology, and Biochemistry, 2011, 75(11):2175-2177.
    [25] 汤俊, 毕永红, 万能, 胡征宇. 葛仙米提取物诱导肝癌细胞HepG2凋亡的活性研究. 安徽农业科学, 2010, 38(33):18643-18645, 18656. Tang J, Bi YH, Wan N, Hu ZY. Induction of apoptosis in HepG2 cells by Nostoc sphaeroides extract. Journal of Anhui Agricultural Sciences, 2010, 38(33):18643-18645, 18656. (in Chinese)
    [26] Wei FF, Liu YL, Bi CC, Chen S, Wang YL, Zhang B. Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high-fat diet mice. Food Science & Nutrition, 2020, 8(5):2348-2359.
    [27] 李子靖. 肠道菌群与肥胖发生和治疗的关系研究进展. 现代商贸工业, 2019, 40(8):84-87.
    [28] Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host & Microbe, 2015, 17(5):662-671.
    [29] 王家妮, 程如越, 罗雅亭, 周青青, 蒋丰岭, 沈曦, 吴晓娜, 何方. 高脂饲料诱导小鼠代谢综合征及对肠道发育、肝脏功能和肠道菌群的影响. 卫生研究, 2021, 50(1):93-99. Wang JN, Cheng RY, Luo YT, Zhou QQ, Jiang FL, Shen X, Wu XN, He F. High-fat diet induces metabolic syndrome in mice and its influence on intestinal development, liver function and intestinal microbiota. Journal of Hygiene Research, 2021, 50(1):93-99. (in Chinese)
    [30] Liang YJ, Lin CL, Zhang YP, Deng YJ, Liu C, Yang QH. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology, 2018, 26(4):1051-1055.
    [31] Ma QT, Li YQ, Wang JK, Li PF, Duan YH, Dai HY, An YC, Cheng L, Wang TS, Wang CG, Wang T, Zhao BS. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomedicine & Pharmacotherapy, 2020, 124:109873.
    引证文献
引用本文

杨丽涛,刘银路,张波. 葛仙米多糖对高脂小鼠血脂和肠道微生物的影响[J]. 微生物学报, 2022, 62(3): 785-796

复制
分享
文章指标
  • 点击次数:429
  • 下载次数: 1485
  • HTML阅读次数: 3546
  • 引用次数: 0
历史
  • 收稿日期:2021-08-11
  • 最后修改日期:2021-11-05
  • 在线发布日期: 2022-03-07
文章二维码