细菌DeoR家族转录调控因子的研究进展
作者:
基金项目:

国家自然科学基金(31800057);安徽农业大学引进和稳定人才科研资助项目(yj2018-08)


Progress on the DeoR family transcriptional regulators in bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌基因组中存在大量的转录调控家族,这些转录调控家族在细菌的生长、代谢、外界信号感知与传递等方面发挥着至关重要的作用。DeoR家族是一类广泛分布于原核生物中的转录调控因子,主要参与调控细胞中多个生理过程,包括核苷酸类代谢、糖类代谢、致病菌的毒力以及链霉菌的次级代谢等。DeoR蛋白C末端的配体结合结构域,通常能够以相关代谢途径的磷酸化中间体作为配体。本文综述了细菌中DeoR家族转录调控因子的结构特征、调控功能以及响应的配体分子,以期为深入研究DeoR家族蛋白的分子调控机制提供参考。

    Abstract:

    There are a large number of transcriptional regulator families in bacterial genomes, which play a crucial role in the growth, metabolism, and external signal perception and transmission of bacteria. Deoxyribonucleoside operon repressor (DeoR) family, a category of transcriptional regulators ubiquitous in prokaryotes, is mainly involved in the regulation of multiple physiological processes, including nucleotide metabolism, sugar metabolism, pathogenesis, and secondary metabolism. The ligand-binding domain at the C-terminus of DeoR usually responds to phosphorylated intermediate of the corresponding metabolic pathway. This paper reviewed the structural features, regulatory function, and ligands of DeoR family transcriptional regulators in bacteria, aiming to help researchers to decipher the regulatory mechanisms of DeoR proteins.

    参考文献
    [1] Valentin-Hansen P, Svenningsen BA, Munch-Petersen A, Hammer-Jespersen K. Regulation of the Deo operon in Escherichia coli. Molecular and General Genetics, 1978, 159(2):191-202.
    [2] Singer JT, Barbier CS, Short SA. Identification of the Escherichia coli deoR and cytR gene products. Journal of Bacteriology, 1985, 163(3):1095-1100.
    [3] Mortensen L, Dandanell G, Hammer K. Purification and characterization of the DeoR repressor of Escherichia coli. The EMBO Journal, 1989, 8(1):325-331.
    [4] Saxild HH, Andersen LN, Hammer K. Dra-nupC-pdp operon of Bacillus subtilis:nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. Journal of Bacteriology, 1996, 178(2):424-434.
    [5] Zeng X, Saxild HH, Switzer RL. Purification and characterization of the DeoR repressor of Bacillus subtilis. Journal of Bacteriology, 2000, 182(7):1916-1922.
    [6] Škerlová J, Fábry M, Hubálek M, Otwinowski Z, Řezáčová P. Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis. The FEBS Journal, 2014, 281(18):4280-4292.
    [7] Gaurivaud P, Laigret F, Garnier M, Bové JM. Characterization of FruR as a putative activator of the fructose operon of Spiroplasma citri. FEMS Microbiology Letters, 2001, 198(1):73-78.
    [8] Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. Journal of Bacteriology, 2003, 185(21):6241-6254.
    [9] Doan T, Aymerich S. Regulation of the central glycolytic genes in Bacillus subtilis:binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Molecular Microbiology, 2003, 47(6):1709-1721.
    [10] Řezáčová P, Kožíšek M, Moy SF, Sieglová I, Joachimiak A, Machius M, Otwinowski Z. Crystal structures of the effector-binding domain of repressor central glycolytic gene regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates. Molecular Microbiology, 2008, 69(4):895-910.
    [11] Barrière C, Veiga-Da-cunha M, Pons N, Guédon E, Van Hijum SAFT, Kok J, Kuipers OP, Ehrlich DS, Renault P. Fructose utilization in Lactococcus lactis as a model for low-GC Gram-positive bacteria:its regulator, signal, and DNA-binding site. Journal of Bacteriology, 2005, 187(11):3752-3761.
    [12] Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Molecular Biology, 2007, 8:104.
    [13] Engels V, Wendisch VF. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. Journal of Bacteriology, 2007, 189(8):2955-2966.
    [14] Hirooka K, Kodoi Y, Satomura T, Fujita Y. Regulation of the rhaEWRBMA operon involved in L-rhamnose catabolism through two transcriptional factors, RhaR and CcpA, in Bacillus subtilis. Journal of Bacteriology, 2015, 198(5):830-845.
    [15] Afzal M, Shafeeq S, Kuipers OP. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae. Applied and Environmental Microbiology, 2014, 80(17):5349-5358.
    [16] Zeng L, Burne RA. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans. Molecular Microbiology, 2021, 115(1):70-83.
    [17] Haghjoo E, Galán JE. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi. Molecular Microbiology, 2007, 64(6):1549-1561.
    [18] Morris CR, Grassel CL, Redman JC, Sahl JW, Barry EM, Rasko DA. Characterization of intracellular growth regulator IcgR by utilizing transcriptomics to identify mediators of pathogenesis in Shigella flexneri. Infection and Immunity, 2013, 81(9):3068-3076.
    [19] Zeng L, Burne RA. Essential roles of the SPPRA fructose-phosphate phosphohydrolase operon in carbohydrate metabolism and virulence expression by Streptococcus mutans. Journal of Bacteriology, 2018, 201(2):e00586-18.
    [20] Turner SE, Pang YY, O'Malley MR, Weisberg AJ, Fraser VN, Yan Q, Chang JH, Anderson JC. A DeoR-type transcription regulator is required for sugar-induced expression of type Ⅲ secretion-encoding genes in Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions, 2020, 33(3):509-518.
    [21] Quintero-Yanes A, Lee CM, Monson R, Salmond G. The FloR master regulator controls flotation, virulence and antibiotic production in Serratia sp. ATCC 39006. Environmental Microbiology, 2020, 22(7):2921-2938.
    [22] Ulanova D, Kitani S, Fukusaki E, Nihira T. SdrA, a new DeoR family regulator involved in Streptomyces avermitilis morphological development and antibiotic production. Applied and Environmental Microbiology, 2013, 79(24):7916-7921.
    [23] Wang F, Ren NN, Luo S, Chen XX, Mao XM, Li YQ. DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus. Gene, 2014, 544(2):208-215.
    [24] Ge BB, Liu Y, Liu BH, Zhao WJ, Zhang KC. Characterization of novel DeoR-family member from the Streptomyces ahygroscopicus strain CK-15 that acts as a repressor of morphological development. Applied Microbiology and Biotechnology, 2016, 100(20):8819-8828.
    [25] Jeon JM, Choi TR, Lee BR, Seo JH, Song HS, Jung HR, Yang SY, Park JY, Kim EJ, Kim BG, Yang YH. Decreased growth and antibiotic production in streptomyces coelicolor A3(2) by deletion of a highly conserved DeoR family regulator, SCO1463. Biotechnology and Bioprocess Engineering, 2019, 24(4):613-621.
    [26] Blombach B, Arndt A, Auchter M, Eikmanns BJ. L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Applied and Environmental Microbiology, 2009, 75(4):1197-1200.
    [27] Chang YC, Tsai MJ, Huang YW, Chung TC, Yang TC. SmQnrR, a DeoR-type transcriptional regulator, negatively regulates the expression of Smqnr and SmtcrA in Stenotrophomonas maltophilia. Journal of Antimicrobial Chemotherapy, 2011, 66(5):1024-1028.
    [28] Ramos-Aires J, Plésiat P, Kocjancic-Curty L, Köhler T. Selection of an antibiotic-hypersusceptible mutant of Pseudomonas aeruginosa:identification of the GlmR transcriptional regulator. Antimicrobial Agents and Chemotherapy, 2004, 48(3):843-851.
    [29] Elgrably-Weiss M, Schlosser-Silverman E, Rosenshine I, Altuvia S. DeoT, a DeoR-type transcriptional regulator of multiple target genes. FEMS Microbiology Letters, 2006, 254(1):141-148.
    [30] Garces F, Fernández FJ, Gómez AM, Pérez-Luque R, Campos E, Prohens R, Aguilar J, Baldomà L, Coll M, Badía J, Vega MC. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli. Biochemistry, 2008, 47(44):11424-11433.
    [31] Cho HY, Lee SG, Hyeon JE, Han SO. Identification and characterization of a transcriptional regulator, SucR, that influences sucCD transcription in Corynebacterium glutamicum. Biochemical and Biophysical Research Communications, 2010, 401(2):300-305.
    [32] Hirooka K, Edahiro T, Kimura K, Fujita Y. Direct and indirect regulation of the ycnKJI operon involved in copper uptake through two transcriptional repressors, YcnK and CsoR, in Bacillus subtilis. Journal of Bacteriology, 2012, 194(20):5675-5687.
    [33] Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. Adaptation of Cupriavidus metallidurans CH34 to toxic zinc concentrations involves an uncharacterized ABC-type transporter. Microorganisms, 2021, 9(2):309.
    [34] Martino GP, Quintana IM, Espariz M, Blancato VS, Magni C. Aroma compounds generation in citrate metabolism of Enterococcus faecium:genetic characterization of type Ⅰ citrate gene cluster. International Journal of Food Microbiology, 2016, 218:27-37.
    [35] Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews, 2006, 70(4):939-1031.
    [36] House D, Bishop A, Parry C, Dougan G, Wain J. Typhoid fever:pathogenesis and disease. Current Opinion in Infectious Diseases, 2001, 14(5):573-578.
    [37] Philpott DJ, Edgeworth JD, Sansonetti PJ. The pathogenesis of Shigella flexneri infection:lessons from in vitro and in vivo studies. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2000, 355(1397):575-586.
    [38] Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. The Journal of Biological Chemistry, 2006, 281(47):36149-36161.
    [39] Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. Subterfuge and manipulation:type Ⅲ effector proteins of phytopathogenic bacteria. Annual Review of Microbiology, 2006, 60:425-449.
    [40] Ramsay JP, Williamson NR, Spring DR, Salmond GPC. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(36):14932-14937.
    [41] Rippe RA, Brenner DA, Tugores A. Techniques to measure nucleic acid-protein binding and specificity:nuclear extract preparations, DNase I footprinting, and mobility shift assays. Nuclease Methods and Protocols. New Jersey:Humana Press, 2001, 160:459-479.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘静,李龙,王云霞,董胜男,张部昌. 细菌DeoR家族转录调控因子的研究进展[J]. 微生物学报, 2022, 62(3): 906-917

复制
分享
文章指标
  • 点击次数:447
  • 下载次数: 1311
  • HTML阅读次数: 1515
  • 引用次数: 0
历史
  • 收稿日期:2021-06-15
  • 最后修改日期:2021-09-14
  • 在线发布日期: 2022-03-07
文章二维码