藻菌共生处理污水的机制与应用研究进展
作者:
基金项目:

国家自然科学基金(41877052);广东省珠江人才计划引进创新创业团队项目(2019ZT08L213)


Advances in mechanisms and applications of algae-bacteria/fungi symbiosis in sewage treatment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在污水处理领域,藻菌共生有同步脱氮、除磷效率高、排放温室气体量低、生物质可资源化回收等优势,近年来受到学者的重视。目前鲜有综述污水处理中藻类与细菌、真菌及混合藻菌间互作机制的文章。本文从藻类-细菌、藻类-真菌、混合藻-混合菌3个方面介绍藻菌共生处理污水的研究进展,重点阐述藻菌间营养物质交换、信号传导及生物絮凝3种不同互作机制,总结污水处理中常见的藻菌共生生物反应器及其应用效果,并从互作机理研究、规模化应用及生物质回收利用的角度展望了今后的研究方向。

    Abstract:

    In the field of wastewater treatment, algae-bacteria/fungi symbiosis can efficiently remove nitrogen and phosphorus, reduce greenhouse gas emissions, and recycle biomass after sewage treatment. Thus, researchers have shown increasing interests in the mechanisms and applications of algae-bacteria/fungi symbiosis in sewage treatment. There are few articles summarizing the interaction mechanisms of different algae-bacteria/fungi symbiotic systems in sewage treatment. In this review, we introduced the research progress on algae-bacteria/fungi symbiosis, especially the interaction mechanisms and effects, in sewage treatment from the following three aspects:algae-bacteria, algae-fungi, and mixed algae-mixed bacteria. Nutrient exchange is the basis of algae-bacteria/fungi symbiosis in sewage treatment. The molecules involved in signal transduction, such as quorum sensing molecules, can change the behavior and growth of algae or bacteria by activating gene expression or physiological activities. Fungal-assisted bio-flocculation has an immobilization effect on algae. Finally, we proposed the future research directions from the perspectives of mechanism, large-scale application, and biomass recycle.

    参考文献
    [1] Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions:evolution, ecology and emerging applications. Biotechnology Advances, 2016, 34(1):14-29.
    [2] Yang LM, Li HK, Wang Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresource Technology, 2019, 275:35-43.
    [3] Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom:biomass production, N and P removal kinetics and harvestability. Water Research, 2015, 83:42-51.
    [4] Zhang B, Li W, Guo Y, Zhang ZQ, Shi WX, Cui FY, Lens PNL, Tay JH. Microalgal-bacterial consortia:from interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 2020, 118:109563.
    [5] Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS. A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere, 2021, 271:129540.
    [6] 皮永蕊, 吕永红, 柳莹, 唐永政, 高丽, 包木太. 微藻-细菌共生体系在废水处理中的应用. 微生物学报, 2019, 59(6):1188-1196. Pi YR, Lv YH, Liu Y, Tang YZ, Gao L, Bao MT. Application of microalgae-bacteria symbiosis system in wastewater treatment. Acta Microbiologica Sinica, 2019, 59(6):1188-1196. (in Chinese)
    [7] Oswald WJ, Gotaas HB. Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 1957, 122(1):73-97.
    [8] Nambiar KR, Bokil SD. Luxury uptake of nitrogen in flocculating algal-bacterial system. Water Research, 1981, 15(6):667-669.
    [9] Sial A, Zhang B, Zhang AL, Liu KY, Imtiaz SA, Yashir N. Microalgal-bacterial synergistic interactions and their potential influence in wastewater treatment:a review. BioEnergy Research, 2021, 14(3):723-738.
    [10] Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Research, 2015, 68:680-691.
    [11] Li XJ, Cai FS, Luan TG, Lin L, Chen BW. Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum. Science of the Total Environment, 2019, 689:287-294.
    [12] Luo SS, Chen BW, Lin L, Wang XW, Tam NFY, Luan TG. Pyrene degradation accelerated by constructed consortium of bacterium and microalga:effects of degradation products on the microalgal growth. Environmental Science & Technology, 2014, 48(23):13917-13924.
    [13] Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environmental Microbiology, 2012, 14(6):1466-1476.
    [14] Jing XY, Yang YT, Ai ZH, Chen SS, Zhou SG. Potassium channel blocker inhibits the formation and electroactivity of Geobacter biofilm. Science of the Total Environment, 2020, 705:135796.
    [15] Chen SS, Jing XY, Tang JH, Fang YL, Zhou SG. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors and Bioelectronics, 2017, 97:369-376.
    [16] Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture, 2011, 317(1/2/3/4):53-57.
    [17] Amin SA, Hmelo LR, Van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 2015, 522(7554):98-101.
    [18] Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EV. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature, 2009, 457(7228):467-470.
    [19] Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu HH, Fernie AR, Bowler C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature, 2011, 473(7346):203-207.
    [20] 骆灵喜, 薛丹, 李彬辉, 刘晓娇. 利用真菌微藻球深度净化污水的研究进展. 工业水处理, 2017, 37(9):10-15. Luo LX, Xue D, Li BH, Liu XJ. Research progress in the application of fungal-microalgal pellets for the advanced purification of wastewater. Industrial Water Treatment, 2017, 37(9):10-15. (in Chinese)
    [21] Zhou WG, Cheng YL, Li Y, Wan YQ, Liu YH, Lin XY, Ruan R. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 2012, 167(2):214-228.
    [22] Jiang MQ, Li HM, Zhou YP, Zhang JB. The interactions of an algae-fungi symbiotic system influen development and properties of aerobic sludge- microalgae granular system. China Environmental Science, 2017, 37(7):2536-2541. (in Chinese)
    [41] Zhang M, Ji B, Liu Y. Microalgal-bacterial granular sludge process:a game changer of future municipal wastewater treatment? Science of the Total Environment, 2021, 752:141957.
    [42] Guo DB, Zhang XC, Shi YT, Cui BH, Fan J, Ji B, Yuan JL. Microalgal-bacterial granular sludge process outperformed aerobic granular sludge process in municipal wastewater treatment with less carbon dioxide emissions. Environmental Science and Pollution Research, 2021, 28(11):13616-13623.
    [43] Li N, Zhang XB, Zhao MM, Zhang YP, Yuan Y, Lu XW, Zhang HG, Sun J. Integrating solar photovoltaic capacitor into algal-bacterial photo-bioelectrochemical system towards all-weather synchronous enhanced antibiotic and nitrogen removal from wastewater. Journal of Cleaner Production, 2020, 272:122661.
    [44] Wang B, Lan CQ, Horsman M. Closed photobioreactor橳匠fo靲传pr獯荤晵ct杩景n 鹯佦 m呩散干oa彬蕧畡牬鄠敢扩杯癭獡牳味履杳. 畂物孯杴彥chnology Advances, 2012, 30(4):904-912.
    [45] Muñoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants:a review. Water Research, 2006, 40(15):2799-2815.
    [46] Sun L, Tian Y, Zhang J, Li LP, Zhang J, Li JZ. A novel membrane bioreactor inoculated with symbiotic sludge bacteria and algae:performance and microbial community analysis. Bioresource Technology, 2018, 251:311-319.
    [47] Sun L, Tian Y, Zhang J, Li H, Tang CC, Li JZ. Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor:influence of inoculation ratios. Chemical Engineering Journal, 2018, 343:455-459.
    [48] Yang ZG, Pei HY, Hou QJ, Jiang LQ, Zhang LJ, Nie CL. Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment:nutrient, organics removal and bioenergy production. Chemical Engineering Journal, 2018, 332:277-285.
    [49] Sun L, Ma JX, Li LP, Tian Y, Zhang Z, Liao HY, Li JB, Tang WW, He D. Exploring the essential factors of performance improvement in sludge membrane bioreactor technology coupled with symbiotic algae. Water Research, 2020, 181:115843.
    [50] Ding Y, Wang W, Liu XP, Song XS, Wang YH, Ullman JL. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology. Bioresource Technology, 2016, 219:757-761.
    [51] Wang M, Yang H, Ergas SJ, Van Der Steen P. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor (PSBR). Water Research, 2015, 87:38-48.
    [52] Godos I, González C, Becares E, García-Encina PA, Muñoz R. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Applied Microbiology and Biotechnology, 2009, 82(1):187-194.
    [53] Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS. Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnology Advances, 2021, 47:107684.
    [54] Su YY. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 2021, 762:144590.
    [55] Wang SJ, Wang X, Poon K, Wang YN, Li SF, Liu HX, Lin SH, Cai ZW. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere, 2013, 92(11):1498-1505.
    [56] Peng FQ, Ying GG, Yang B, Liu S, Lai HJ, Liu YS, Chen ZF, Zhou GJ. Biotransformation of pr聯佧es兴艥ro孮乥 a獮乤甠no聲汧酥畳牴腲轥佬夠瑢驹氠汴幷汯瘠硦穲es獨塷祡孴乥扲朠microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa):transformation kinetics and products identification. Chemosphere, 2014, 95:581-588.
    [57] Leng LJ, Wei L, Xiong Q, Xu SY, Li WT, Lv S, Lu Q, Wan LP, Wen ZY, Zhou WG. Use of microalgae based technology for the removal of antibiotics from wastewater:a review. Chemosphere, 2020, 238:124680.
    [58] Leng LJ, Wei L, Xiong Q, Xu SY, Li WT, Lv S, Lu Q, Wan LP,删瑗en匠噚瑙, 剚獨浯u 鹗桇. 剕赳罥 o奦氠汭汩c彲蕯聡呬顧籡癥圠兢卡牳恥硤稠te乣器獮塯祬孯gy for the removal of antibiotics from wastewater:a review. Chemosphere, 2020, 238:124680.
    相似文献
    引证文献
引用本文

李苏洁,陈姗姗,栾天罡. 藻菌共生处理污水的机制与应用研究进展[J]. 微生物学报, 2022, 62(3): 918-929

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-25
  • 最后修改日期:2021-08-08
  • 在线发布日期: 2022-03-07
文章二维码