T7噬菌体转运真核表达载体入胞表达平台的构建
作者:
基金项目:

江苏农牧科技职业学院院级课题(NSF201902)


Construction of T7 phage mediated eukaryotic expression vector transport platform
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】构建携带锚定序列的真核表达载体,研究T7噬菌体识别、包裹和转运真核表达载体进入细胞实现蛋白表达的可行性,为DNA疫苗研发建立新的技术平台。【方法】本研究通过重叠延伸PCR方法获得候选锚定序列并插入真核表达载体;建立荧光定量PCR方法比较T7噬菌体识别、包裹真核表达载体的效率;激光共聚焦显微镜观察T7噬菌体转运真核表达载体进入细胞实现报告基因的表达。【结果】获得4条锚定序列(AS1-4)并成功插入pcDNA3.0-EGFP真核表达载体;其中携带2号锚定序列(pcDNA3.0-EGFP-AS2)的真核表达载体可被T7噬菌体高效识别,对其包裹效率高达95%;T7噬菌体包裹真核表达载体可以抵御核酸酶对质粒的降解,并且转运真核表达载体进入树突状细胞内部实现报告基因EGFP的表达。【结论】该研究表明,T7噬菌体通过识别锚定序列将真核表达载体包裹进衣壳内部,完整的噬菌体颗粒作为转运工具将真核表达载体运送至细胞内部实现表达,这为DNA疫苗研发提供新的技术平台。

    Abstract:

    [Objective] This study aimed to construct a novel T7 phage delivery platform for the recognition and packaging of eukaryotic expression vector harboring an anchor sequence, and to evaluate its feasibility for DNA vaccine research and development.[Methods] Anchor sequences were prepared by SOE-PCR method and inserted into the non-essential region of pcDNA3.0-EGFP to construct the recombinant eukaryotic expression plasmid. The recognition and packaging efficiency of recombinant plasmids by T7 phage was determined via fluorescence quantitative PCR method. Intact T7 phage particles carrying recombinant plasmids were then used as vehicle to deliver plasmids into dendritic cells. The EGFP gene expression was detected using a confocal microscope.[Results] Four PCR amplified-anchor sequence (AS1-4) were successfully inserted into pcDNA3.0-EGFP plasmid. The recombinant plasmid pcDNA3.0-EGFP-AS2 could be recognized and packaged by T7 phage at a package efficiency of approximately 95%. T7 phage packaging effectively prevented the nuclease degradation of recombinant plasmids. Moreover, intense EGFP expression was detected by confocal microscopy suggesting the successful phage-based delivery of plasmids into dendritic cells.[Conclusion] Our results demonstrate that eukaryotic expression plasmid harboring anchor sequences can be recognized and packaged by T7 phage, and the intact phage particles can be used as a vehicle to delivery plasmids into dendritic cells for endogenous gene expression. T7 phage mediated eukaryotic expression may provide a novel technical platform for the research and development of DNA vaccine.

    参考文献
    [1] Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949 Pt 1):1465-1468.
    [2] Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Review of Vaccines, 2016, 15(3):313-329.
    [3] Tejeda-Mansir A, García-Rendón A, Guerrero-Germán P. Plasmid-DNA lipid and polymeric nanovaccines:a new strategic in vaccines development. Biotechnology and Genetic Engineering Reviews, 2019, 35(1):46-68.
    [4] Wang WQ, Saeed M, Zhou Y, Yang LL, Wang DG, Yu HJ. Non-viral gene delivery for cancer immunotherapy. The Journal of Gene Medicine, 2019, 21(7):e3092.
    [5] Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based carriers for DNA vaccine design. Angewandte Chemie International Edition, 2021, 60(24):13225-13243.
    [6] P.O. Editors. Retraction:a DNA inducing VLP vaccine designed for HIV and tested in mice. PLoS One, 2018, 13(8):e0203635.
    [7] Uddin MN, Henry B, Carter KD, Roni MA, Kouzi SS. A novel formulation strategy to deliver combined DNA and VLP based HPV vaccine. Journal of Pharmacy & Pharmaceutical Sciences, 2019, 22:536-547.
    [8] Zhai LK, Peabody J, Pang YYS, Schiller J, Chackerian B, Tumban E. A novel candidate HPV vaccine:MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Research, 2017, 147:116-123.
    [9] Iwagami Y, Casulli S, Nagaoka K, Kim M, Carlson RI, Ogawa K, Lebowitz MS, Fuller S, Biswas B, Stewart S, Dong XQ, Ghanbari H, Wands JR. Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma. Heliyon, 2017, 3(9):e00407.
    [10] Wu P, Yin XY, Liu QQ, Wu WX, Chen CF. Recombinant T7 phage with FMDV AKT-III strain VP1 protein is a potential FMDV vaccine. Biotechnology Letters, 2021, 43(1):35-41.
    [11] Jafari N, Abediankenari S. Phage particles as vaccine delivery vehicles:concepts, applications and prospects. Asian Pacific Journal of Cancer Prevention, 2016, 16(18):8019-8029.
    [12] Xu H, Bao X, Wang YW, Xu Y, Deng BH, Lu Y, Hou JB. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virology Journal, 2018, 15(1):49.
    [13] Chung YB, Hinkle DC. Bacteriophage T7 DNA packaging:I. Plasmids containing a T7 replication origin and the T7 concatemer junction are packaged into transducing particles during phage infection. Journal of Molecular Biology, 1990, 216(4):911-926.
    [14] Serwer P, Watson RH, Hayes SJ. Formation of the right before the left mature DNA end during packaging-cleavage of bacteriophage T7 DNA concatemers. Journal of Molecular Biology, 1992, 226(2):311-317.
    [15] Sun M, Louie D, Serwer P. Single-event analysis of the packaging of bacteriophage T7 DNA concatemers in vitro. Biophysical Journal, 1999, 77(3):1627-1637.
    [16] Zhao C, Zhao J, Wang W, Fan Y, Ma C, Zhang D, Lv Y. Expression of MLAA34-HSP70 fusion gene constructed by SOE-PCR. Pakistan Journal of Pharmaceutical Sciences, 2017, 30:1125-1127.
    [17] 付佳, 梁金逢, 阴银燕, 杨倩. 鸡骨髓源树突状细胞体外诱导培养及鉴定. 南京农业大学学报, 2013, 36(2):110-114. Fu J, Liang JF, Yin YY, Yang Q. Culture and identification of chicken bone marrow-derived dendritic cells in vitro. Journal of Nanjing Agricultural University, 2013, 36(2):110-114. (in Chinese)
    [18] Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-a critical comparison of current approaches. International Review of Cell and Molecular Biology. Amsterdam:Elsevier, 2019:251-307.
    [19] Xu H, Bao X, Lu Y, Liu YM, Deng BH, Wang YW, Xu Y, Hou JB. Immunogenicity of T7 bacteriophage nanoparticles displaying G-H loop of foot-and-mouth disease virus (FMDV). Veterinary Microbiology, 2017, 205:46-52.
    [20] Van Drunen Littel-Van Den Hurk S, Gerdts V, Loehr BI, Pontarollo R, Rankin R, Uwiera R, Babiuk LA. Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Advanced Drug Delivery Reviews, 2000, 43(1):13-28.
    [21] Fry LM, Bastos RG, Stone BC, Williams LB, Knowles DP, Murphy SC. Gene gun DNA immunization of cattle induces humoral and CD4 T-cell-mediated immune responses against the Theileria parva polymorphic immunodominant molecule. Vaccine, 2019, 37(12):1546-1553.
    [22] Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, Plummer SA, Mascola JR, Bailer RT, Roederer M, Koup RA, Nabel GJ, Team TVS. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One, 2013, 8(4):e59340.
    [23] Lu YX, Wu FP, Duan WH, Mu X, Fang S, Lu NN, Zhou XF, Kong W. Engineering a "PEG-gPEI/DNA nanoparticle-in- PLGA microsphere" hybrid controlled release system to enhance immunogenicity of DNA vaccine. Materials Science and Engineering:C, 2020, 106:110294.
    [24] Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, Cho CS, Islam MA. Engineered nanodelivery systems to improve DNA vaccine technologies. Pharmaceutics, 2020, 12(1):30.
    [25] 徐海, 鲍熹, 王义伟, 卢宇, 许梦薇, 侯继波. 转运真核表达盒的重组T7噬菌体构建. 江苏农业学报, 2015, 31(1):117-121. Xu H, Bao X, Wang YW, Lu Y, Xü MW, Hou JB. Construction of recombinant bacteriophage T7 delivering eukaryotic expression box. Jiangsu Journal of Agricultural Sciences, 2015, 31(1):117-121. (in Chinese)
    [26] K.G. Alan Rosenberg, F. William Studier. T7 Select® phage display system:a powerful new protein display system based on bacteriophage T7. InNovations, 1996, 6:1-6.
    [27] Wadia J, Eguchi A, Dowdy SF. DNA delivery into mammalian cells using bacteriophage displaying the TAT transduction domain. Cold Spring Harbor Protocols, 2013, 2013(1):pdb.prot072660.
    [28] Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. The Journal of Biological Chemistry, 2001, 276(28):26204-26210.
    相似文献
    引证文献
引用本文

徐海,李睿婷,张婕妮,郭子杰,林梦舟,洪伟鸣,李玲,朱善元,侯继波,Hafizah Y. Chenia. T7噬菌体转运真核表达载体入胞表达平台的构建[J]. 微生物学报, 2022, 62(3): 982-992

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-15
  • 最后修改日期:2021-08-05
  • 在线发布日期: 2022-03-07
文章二维码