ygeG基因对禽致病性大肠杆菌生物学特性及致病性的影响
作者:
基金项目:

国家自然科学基金(31772707)


Effect of ygeG on biological characteristics and the pathogenicity of avian pathogenic Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】本研究构建禽致病性大肠杆菌(avian pathogenic Escherichia coli,APEC)ygeG基因缺失株,并对其进行生物学特性及致病性分析,探究ygeG在APEC致病过程中的作用,为后期深入研究其所在的Ⅲ型分泌系统2(type three secretion systems 2,ETT2)毒力岛的致病机制奠定基础。【方法】利用Red同源重组技术构建ygeG缺失株APEC81-ΔygeG及其回复株APEC81-CΔygeG,通过运动性、生物被膜形成能力、抗逆性、抗血清杀菌能力等试验分析ygeG对APEC致病性相关的生物学功能的影响,并通过细胞黏附、侵袭试验及荧光定量PCR检测细胞炎性因子转录水平探究ygeG对APEC感染宿主过程的影响。【结果】成功构建了缺失株APEC81-ΔygeG和回复株APEC81-CΔygeG;与野生株APEC81相比,缺失株APEC81-ΔygeG生长特性无显著变化(P>0.05),生物被膜形成能力显著降低(P<0.01),运动能力极显著升高(P<0.001),对酸休克和氧化休克的耐受力极显著降低(P<0.001),对碱、渗透压和热休克的耐受力显著降低(P<0.01);血清杀菌实验表明,ygeG缺失能显著降低其抗血清杀菌作用(P<0.01),血清浓度为100%、30%时,差异极显著(P<0.001);与野生株APEC81相比,缺失株APEC81-ΔygeG对鸡气管粘膜上皮细胞的黏附能力极显著下降(P<0.001),侵袭能力显著升高(P<0.01);同时,经APEC81-ΔygeG感染的鸡气管粘膜上皮细胞炎性因子转录水平显著升高(P<0.01)。【结论】ygeG影响APEC的生物被膜形成、运动性、抗逆性、黏附侵袭能力、以及对血清的敏感性等,并可抑制细胞炎性因子表达。

    Abstract:

    [Objective] To construct the ygeG deletion strain of avian pathogenic Escherichia coli (APEC), and analyze its biological characteristics and pathogenicity to explore the role of ygeG plays on the pathogenesis of APEC, so as to lay a foundation for further research on the pathogenesis of type three secretion system 2 (ETT2), which ygeG locates in.[Methods] The ygeG deletion strain (APEC81-ΔygeG) and complementary strain (APEC81-CΔygeG) were constructed by Red homologous recombination technology. Then, the growth curve, motility, biofilm formation, stress resistance, serum resistance among APEC81, APEC81-ΔygeG and APEC81-CΔygeG were compared and analyzed. The effect on host infection of ygeG was investigated by cell adhesion, invasion test and inflammatory factor expression level detection by fluorescence quantitative PCR.[Results] We successfully constructed APEC81-ΔygeG and APEC81-CΔygeG. Compared with APEC81, there was no significant changes in growth characteristics in APEC81-CΔygeG (P>0.05). However, biofilm formation ability of APEC81-ΔygeG significantly decreased (P<0.01), motility of APEC81-ΔygeG extremely significantly improved (P<0.001). Compared with APEC81, APEC81-ΔygeG showed lower tolerance to acid (P<0.001) and oxidative shock (P<0.001), and higer tolerance to alkali (P<0.01), osmotic pressur (P<0.01) and heat shock (P<0.01). Furthermore, serum survival experiments results showed that deletion of ygeG significantly decreased survival abilities of APEC81 in serum (P<0.01), and extremely significantly decreased at serum concentrations of 100% and 30% (P<0.001); The adhesion of APEC81-ΔygeG to epithelial cells of chicken trachea mucosa was extremely significantly decreased (P<0.001), and the invasion ability was significantly increased (P<0.01). Furthermore, qPCR results also showed that APEC81-ΔygeG significantly up-regulated the transcription level of of inflammatory factors in chicken tracheal epithelial cells (P<0.01).[Conclusion] These data indicated that ygeG plays roles in regulation of biofilm formation, motility, stress resistance, adhesion and invasion ability, and serum resistance of APEC, it also can inhibit cell inflammatory factor expression.

    参考文献
    [1] Johnson TJ, Wannemuehler Y, Kariyawasam S, Johnson JR, Logue CM, Nolan LK. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates. Journal of Bacteriology, 2012, 194(11):2846-2853.
    [2] Dale C, Plague GR, Wang B, Ochman H, Moran NA. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19):12397-12402.
    [3] Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Research, 2001, 8(1):11-22.
    [4] Hartleib S, Prager R, Hedenström I, Löfdahl S, Tschäpe H. Prevalence of the new, SPI1-like, pathogenicity island ETT2 among Escherichia coli. International Journal of Medical Microbiology, 2003, 292(7/8):487-493.
    [5] Ideses D, Gophna U, Paitan Y, Chaudhuri RR, Pallen MJ, Ron EZ. A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. Journal of Bacteriology, 2005, 187(23):8164-8171.
    [6] Osawa K, Shibata M, Nishiyama Y, Kataoka N, Kurokawa M, Yamamoto G, Kinoshita S. Identification of the ETT2 locus in human diarrheagenic Escherichia coli by multiplex PCR. Journal of Infection and Chemotherapy, 2006, 12(3):157-159.
    [7] Yao YF, Xie Y, Perace D, Zhong Y, Lu J, Tao J, Guo XK, Kim KS. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells. FEMS Microbiology Letters, 2009, 300(1):18-24.
    [8] 尹磊. ETT2和phoP在禽致病性大肠杆菌生物被膜形成及致病性研究. 安徽农业大学博士学位论文, 2019.
    [9] 易正飞. Ⅲ型分泌系统2效应因子及双组分系统CpxR对禽致病性大肠杆菌毒力的影响.中国农业科学院学位论文, 2020.
    [10] Ghosh P. Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews, 2004, 68(4):771-795.
    [11] De Parsot C, Hamiaux C, Page AL. The various and varying roles of specific chaperones in type III secretion systems. Current Opinion in Microbiology, 2003, 6(1):7-14.
    [12] 薛媚. KdpDE与YgeK对禽致病性大肠杆菌致病性的影响及调控机制研究. 安徽农业大学博士学位论文, 2020.
    [13] 白光兴, 孙志伟, 黄莺, 俞炜源. 利用Red重组系统对大肠杆菌ClpP基因的敲除. 中国生物化学与分子生物学报, 2005, 21(1):35-38. Bai GX, Sun ZW, Huang Y, Yu WY. Deletion of clpP in chromosome of E. coli by Red recombination. Chinese Journal of Biochemistry and Molecular Biology, 2005, 21(1):35-38. (in Chinese)
    [14] 王泽平, 李倩文, 尹磊, 涂健, 宋祥军, 邵颖, 祁克宗. 大肠杆菌三型分泌系统2转录调节子EtrA对禽致病性大肠杆菌致病性的影响. 微生物学通报, 2020, 47(5):1515-1523. Wang ZP, Li QW, Yin L, Tu J, Song XJ, Shao Y, Qi KZ. Effect of ETT2 transcriptional regulator EtrA on the pathogenicity of avian pathogenic Escherichia coli. Microbiology China, 2020, 47(5):1515-1523. (in Chinese)
    [15] 熊丹. 肠炎沙门菌新型抑炎效应蛋白TcpS逃逸宿主天然免疫的机制研究. 扬州大学博士学位论文, 2020.
    [16] Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E, Guigon G, Carbonnelle E, Lortholary O, Clermont O, Denamur E, Picard B, Nassif X, Brisse S. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics, 2008, 9:560.
    [17] Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(6):3140-3145.
    [18] Mitchell NM, Johnson JR, Johnston B, Curtiss R III, Mellata M. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Applied and Environmental Microbiology, 2015, 81(3):1177-1187.
    [19] Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin JY, Yen G, Schwartz DC, Welch RA, Blattner FR. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 2001, 409(6819):529-533.
    [20] Miyazaki J, Ba-Thein W, Kumao T, Akaza H, Hayashi H. Identification of a type III secretion system in uropathogenic Escherichia coli. FEMS Microbiology Letters, 2002, 212(2):221-228.
    [21] Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms:a focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1):522-554.
    [22] 谷丰. 高温噬菌体TSP4分子伴侣CPN47对酶热稳定性的影响研究. 昆明理工大学博士学位论文, 2014.
    [23] Lithwick G, Margalit H. Hierarchy of sequence- dependent features associated with prokaryotic translation. Genome Research, 2003, 13(12):2665-2673.
    [24] Darwin KH, Miller VL. Type III secretion chaperone-dependent regulation:activation of virulence genes by SicA and InvF in Salmonella typhimurium. The EMBO Journal, 2001, 20(8):1850-1862.
    [25] Parsek MR. Controlling the connections of cells to the biofilm matrix. Journal of Bacteriology, 2016, 198(1):12-14.
    [26] Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Molecular Microbiology, 2010, 75(4):827-842.
    [27] 高清清, 夏乐, 刘娟华, 高崧, 刘秀梵. kpsE和kpsD双基因缺失显著降低肠道外致病性大肠杆菌的毒力. 微生物学报, 2016, 56(10):1571-1582. Gao QQ, Xia L, Liu JH, Gao S, Liu XF. Dual deletion of the kpsE and kpsD genes reduced the bacterial virulence of extraintestinal pathogenic Escherichia coli. Acta Microbiologica Sinica, 2016, 56(10):1571-1582. (in Chinese)
    [28] la Ragione RM, Woodward MJ. Virulence factors of Escherichia coli serotypes associated with avian colisepticaemia. Research in Veterinary Science, 2002, 73(1):27-35.
    [29] Heesterbeek DAC, Muts RM, van Hensbergen VP, De Saint Aulaire P, Wennekes T, Bardoel BW, Van Sorge NM, Rooijakkers SHM. Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. PLoS Pathogens, 2021, 17(1):e1009227.
    [30] Arabski M, Konieczna I, Tusińska E, Wąsik S, Relich I, Zając K, Kamiński ZJ, Kaca W. The use of lysozyme modified with fluorescein for the detection of Gram-positive bacteria. Microbiological Research, 2015, 170:242-247.
    [31] 张丽娇, 岳丽敏, 马莹聪. 不同血清浓度对小鼠骨髓巨噬细胞原代培养的影响. 黑龙江畜牧兽医, 2014(3):167-168, 208. Zhang LJ, Yue LM, Ma YC. Effect of different serum concentrations on primary culture of mouse bone marrow macrophages. Heilongjiang Animal Science and Veterinary Medicine, 2014(3):167-168, 208. (in Chinese)
    [32] 霍静. 7种胞内菌对不同细胞系黏附侵袭及生存能力研究. 河北工程大学博士学位论文, 2020.
    [33] Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiology and Molecular Biology Reviews, 1997, 61(2):136-169.
    [34] 蔺志杰. 肠炎沙门菌效应蛋白AvrA参与宿主炎性反应机制. 扬州大学博士学位论文, 2017.
    [35] Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, Crhanova M, Karasova D, Faldyna M, Rychlik I. SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Veterinary Research, 2011, 42(1):1-7.
    [36] Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions. Endocrine Reviews, 2001, 22(2):153-183.
    [37] Vlahopoulos S, Zoumpourlis VC. JNK:a key modulator of intracellular signaling. Biochemistry:Moscow, 2004, 69(8):844-854.
    [38] 王海光, 毛旭虎. 肠出血性大肠杆菌Ⅲ型分泌系统效应因子与宿主细胞相互作用研究进展. 微生物学免疫学进展, 2012, 40(2):53-57. Wang HG, Mao XH. Progress of the interactions between type Ⅲ secretion system effector from enterohemorrhagic Escherichia coli and host cells. Progress in Microbiology and Immunology, 2012, 40(2):53-57. (in Chinese)
    [39] 王玉瑞, 廖翔, 周围, 戴红梅, 宋婷, 梁龙. 大肠杆菌O157:H7Ⅲ型分泌系统的缺陷突变株对HeLa细胞黏附能力的影响. 军事医学, 2014, 38(10):795-798. Wang YR, Liao X, Zhou W, Dai HM, Song T, Liang L. Effect of type Ⅲ secretion system deficient mutant of E. coli O157:H7 on attachment of HeLa cells. Military Medical Sciences, 2014, 38(10):795-798. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜楠,郑倩倩,李倩文,涂健,宋祥军,邵颖,祁克宗. ygeG基因对禽致病性大肠杆菌生物学特性及致病性的影响[J]. 微生物学报, 2022, 62(3): 1020-1032

复制
分享
文章指标
  • 点击次数:371
  • 下载次数: 1210
  • HTML阅读次数: 871
  • 引用次数: 0
历史
  • 收稿日期:2021-06-18
  • 最后修改日期:2021-08-08
  • 在线发布日期: 2022-03-07
文章二维码