LytSR和PdtaSR双组分系统对须糖多孢菌丁烯基多杀菌素生物合成的影响
作者:
基金项目:

国家自然科学基金(31770106)


The effect of LytSR and PdtaSR two-component systems on the biosynthesis of butenyl-spinosyn of Saccharopolyspora pogona
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】须糖多孢菌(Saccharopolyspora pogona)基因组中存在一些双组分系统(two-component system,TCS),包括一个LytR调控因子和一个PdtaR转录抗终止调节因子,我们旨在通过基因工程技术改造分析这两个双组分系统蛋白在须糖多孢菌中的作用。【方法】本研究利用融合PCR和属间接合转移技术,构建了S. pogona-∆lytRS. pogona-PdtaR工程菌株,研究它们对须糖多孢菌丁烯基多杀菌素生物合成的影响。【结果】HPLC检测和质谱鉴定表明,与原始菌相比,S. pogona-∆lytR中丁烯基多杀菌素产量有所提高,而S. pogona-PdtaR中产量下调,表明lytRpdtaR对丁烯基多杀菌素生物合成有负调控作用。此外,生长曲线测定和表型分析结果表明,S. pogona-∆lytRS. pogona-PdtaR对须糖多孢菌的生长发育和孢子形成也产生了一定的影响。【结论】本研究为进一步阐明丁烯基多杀菌素生物合成的调控机制奠定了理论基础。

    Abstract:

    [Objective] There are some two-component systems in the genome of Saccharopolyspora pogona, including a LytR regulatory factor and a PdtaR transcription resistance termination regulator, which were analyzed through genetic engineering technology.[Methods] In this study, we performed the fusion PCR and inter-genus conjugative transfer technology to construct S. pogona-∆lytR and S. pogona-PdtaR, and studied their effects on the biosynthesis of butenyl-spinosyn.[Results] We found that the production of butenyl-spinosyn in S. pogona-∆lytR was increased compared that in the wild type, while the butenyl-spinosyn production of S. pogona-PdtaR was dropt through high performance liquid chromatography (HPLC) experiments, indicating that lytR and pdtaR negetively regulating the biosynthesis of butenyl-spinosyn. In addition, we found that S. pogona-∆lytR and S. pogona-PdtaR also had certain impacts on the growth and sporulation.[Conclusion] This stydy laid a theoretical foundation for further elucidating the regulatory mechanism of butenyl-spinosyn biosynthesis.

    参考文献
    [1] Hahn DR, Gustafson G, Waldron C, Bullard B, Jackson JD, Mitchell J. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. Journal of Industrial Microbiology and Biotechnology, 2006, 33(2):94-104.
    [2] Young DL, Mihaliak CA, West SD, Hanselman KA, Collins RA, Phillips AM, Robb CK. Determination of spinosad and its metabolites in food and environmental matrices. 3. immunoassay methods. Journal of Agricultural and Food Chemistry, 2000, 48(11):5146-5153.
    [3] Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupner PR. Discovery of the butenyl-spinosyn insecticides:novel macrolides from the new bacterial strain Saccharopolyspora pogona. Bioorganic & Medicinal Chemistry, 2009, 17(12):4185-4196.
    [4] Millar NS, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invertebrate Neuroscience, 2007, 7(1):53-66.
    [5] Hong L, Zhao ZB, Melançon CE, Zhang H, Liu HW. In vitro characterization of the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway of Saccharopolyspora spinosa. Journal of the American Chemical Society, 2008, 130(14):4954-4967.
    [6] Kim HJ, White-Phillip JA, Ogasawara Y, Shin N, Isiorho EA, Liu HW. Biosynthesis of spinosyn in Saccharopolyspora spinosa:synthesis of permethylated rhamnose and characterization of the functions of SpnH, SpnI, and SpnK. Journal of the American Chemical Society, 2010, 132(9):2901-2903.
    [7] Huang KX, Xia LQ, Zhang YM, Ding XZ, Zahn JA. Recent advances in the biochemistry of spinosyns. Applied Microbiology and Biotechnology, 2009, 82(1):13-23.
    [8] Li L, Rang J, He HC, He SY, Liu ZD, Tang JL, Xiao J, He L, Hu SB, Yu ZQ, Ding XZ, Xia LQ. Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona. Applied Microbiology and Biotechnology, 2018, 102(18):8011-8021.
    [9] Zhu ZH, Li H, Yu P, Guo YY, Luo S, Chen ZB, Mao XM, Guan WJ, Li YQ. SlnR is a positive pathway-specific regulator for salinomycin biosynthesis in Streptomyces albus. Applied Microbiology and Biotechnology, 2017, 101(4):1547-1557.
    [10] Li L, Gong L, He HC, Liu ZD, Rang J, Tang JL, Peng SN, Yuan SQ, Ding XZ, Yu ZQ, Xia LQ, Sun YJ. AfsR is an important regulatory factor for growth and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Annals of Microbiology, 2019, 69(8):809-818.
    [11] Rang J, He HC, Chen JM, Hu JJ, Tang JL, Liu ZD, Xia ZY, Ding XZ, Zhang YM, Xia LQ. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. iScience, 2020, 23(8):101398.
    [12] de Dios R, Santero E, Reyes-Ramírez F. Extracytoplasmic function σ factors as tools for coordinating stress responses. International Journal of Molecular Sciences, 2021, 22(8):3900.
    [13] Staroń A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. The third pillar of bacterial signal transduction:classification of the extracytoplasmic function (ECF) Sigma factor protein family. Molecular Microbiology, 2009, 74(3):557-581.
    [14] Darnell RL, Nakatani Y, Knottenbelt MK, Gebhard S, Cook GM. Functional characterization of BcrR:a one-component transmembrane signal transduction system for bacitracin resistance. Microbiology:Reading, England, 2019, 165(4):475-487.
    [15] Mehdizadeh Gohari I, LI J, Mcclane BA. Identifying the basis for VirS/VirR two-component regulatory system control of Clostridium perfringens beta toxin production. Journal of Bacteriology, 2021:JB0027921.
    [16] Anantharaman V, Aravind L. New connections in the prokaryotic toxin-antitoxin network:relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biology, 2003, 4(12):R81.
    [17] Patton TG, Yang SJ, Bayles KW. The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Molecular Microbiology, 2006, 59(5):1395-1404.
    [18] Sadykov MR, Bayles KW. The control of death and lysis in staphylococcal biofilms:a coordination of physiological signals. Current Opinion in Microbiology, 2012, 15(2):211-215.
    [19] Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW. The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. Journal of Bacteriology, 2009, 191(15):4767-4775.
    [20] Morth JP, Gosmann S, Nowak E, Tucker PA. A novel two-component system found in Mycobacterium tuberculosis. FEBS Letters, 2005, 579(19):4145-4148.
    [21] Preu J, Panjikar S, Morth P, Jaiswal R, Karunakar P, Tucker PA. The sensor region of the ubiquitous cytosolic sensor kinase, PdtaS, contains PAS and GAF domain sensing modules. Journal of Structural Biology, 2012, 177(2):498-505.
    [22] Rang J, He HC, Yuan SQ, Tang JL, Liu ZD, Xia ZY, Khan TA, Hu SB, Yu ZQ, Hu YB, Sun YJ, Huang WT, Ding XZ, Xia LQ. Deciphering the metabolic pathway difference between Saccharopolyspora pogona and Saccharopolyspora spinosa by comparative proteomics and metabonomics. Frontiers in Microbiology, 2020, 11:396.
    [23] Mouri Y, Konishi K, Fujita A, Tezuka T, Ohnishi Y. Regulation of sporangium formation by BldD in the rare actinomycete Actinoplanes missouriensis. Journal of Bacteriology, 2017, 199(12):e00840-16.
    [24] Kaiser BK, Stoddard BL. DNA recognition and transcriptional regulation by the WhiA sporulation factor. Scientific Reports, 2011, 1:156.
    [25] 邬洋, 徐妙, 罗林根, 杨燕, 夏立秋. 丁烯基多杀菌素高产菌株的巴龙霉素抗性筛选. 中国生物防治学报, 2015, 31(1):106-114. Wu Y, Xu M, Luo LG, Yang Y, Xia LQ. Screening of butenyl-spinosyn high-yield strains by paromomycin resistance. Chinese Journal of Biological Control, 2015, 31(1):106-114. (in Chinese)
    [26] 罗林根, 杨燕, 魏慧, 穰杰, 唐琼, 胡胜标, 孙运军, 余子全, 丁学知, 夏立秋. 须糖多孢菌Saccharopolyspora pogona的核糖体工程改造对丁烯基多杀菌素合成的影响. 生物工程学报, 2016, 32(2):259-263. Luo LG, Yang Y, Wei H, Rang J, Tang Q, Hu SB, Sun YJ, Yu ZQ, Ding XZ, Xia LQ. Effect of ribosome engineering on butenyl-spinosyns synthesis of Saccharopolyspora pogona. Chinese Journal of Biotechnology, 2016, 32(2):259-263. (in Chinese)
    [27] 彭胜男, 何昊城, 苑爽芹, 穰杰, 胡胜标, 孙运军, 余子全, 黄伟涛, 胡益波, 丁学知, 夏立秋. fcl基因对须糖多孢菌丁烯基多杀菌素生物合成及生长发育的影响. 生物工程学报, 2019, 35(9):1662-1675. Peng SN, He HC, Yuan SQ, Rang J, Hu SB, Sun YJ, Yu ZQ, Huang WT, Hu YB, Ding XZ, Xia LQ. Effect of fcl gene for butenyl-spinosyn biosynthesis and growth of Saccharopolyspora pogona. Chinese Journal of Biotechnology, 2019, 35(9):1662-1675. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

万千千,罗粤雯,何昊城,夏梓源,穰杰,朱梓榕,曹丽,夏立秋. LytSR和PdtaSR双组分系统对须糖多孢菌丁烯基多杀菌素生物合成的影响[J]. 微生物学报, 2022, 62(3): 1033-1048

复制
分享
文章指标
  • 点击次数:336
  • 下载次数: 854
  • HTML阅读次数: 913
  • 引用次数: 0
历史
  • 收稿日期:2021-06-18
  • 最后修改日期:2021-07-22
  • 在线发布日期: 2022-03-07
文章二维码