环链虫草Cordyceps cateniannulata对番茄生长和抗氧化酶活性的影响
作者:
基金项目:

贵州省烟草公司遵义市公司科技项目(2018-02);大学生“SRT计划”项目(贵大SRT字[2019]356号)


Effect of Cordyceps cateniannulata on the growth and antioxidant enzyme activity of Solanum lycopersicum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】评估环链虫草Cordyceps cateniannulata对植物促生和植物抗氧化酶活性的影响。【方法】本研究利用浸种法将环链虫草接种于番茄植物体,在接种后的第30天和60天,通过番茄株高、根长、地上和地下部分的干鲜重指标评价其对番茄生长的影响;在接种后第10、20、30、60和90天,通过选择性培养基分析其在番茄不同组织中的生存情况,使用形态学及DNA序列比对的方法检验所分离菌株与原有菌株的一致性。在处理后的第30天,检测番茄叶片中的过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)及丙二醛(MDA)含量,观察环链虫草对番茄的抗氧化酶活性影响。【结果】环链虫草可定殖于番茄幼苗且对番茄生长有显著促进作用,菌株对植株的定殖偏好性分别为根部>茎部>叶部。酶活检测结果表明,处理组番茄叶片防御酶活性均呈显著升高的趋势,其中POD、CAT、SOD活性分别比对照增加了52.21%、75.31%和158.59%,MDA含量下降了35.15%。【结论】环链虫草可以通过浸种的方法感染并定殖番茄幼苗的根、茎、叶,促进番茄幼苗的生长并提高番茄抗氧化酶活性,具有较好的田间生态应用潜力。

    Abstract:

    [Objective] This paper aims to evaluate the effect of Cordyceps cateniannulata on the growth and antioxidant enzyme activity of Solanum lycopersicum.[Methods] With the seed soaking method, S. lycopersicum was inoculated with C. cateniannulata. The plant height, root length, fresh and dry weight of root, and fresh and dry weight of shoot of S. lycopersicum were measured 30 and 60 days post inoculation (dpi) to assess the influence of the fungus on plant growth. Endophytic colonization of different plant parts by the tested fungus was confirmed 10, 20, 30, 60 and 90 dpi via a selective medium. Through morphological identification and DNA sequence alignment, we tested whether the endophytes isolated from S. lycopersicum were the inoculated strains. The content of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) in S. lycopersicum leaves was determined 30 dpi in a bid to evaluate the effect on antioxidant enzyme activity.[Results] C. cateniannulata colonized S. lycopersicum seedlings and promoted the plant growth. At all the five sampling time points, the colonization rate was in the order of root>stem>leaf. C. cateniannulata significantly increased the activity of defense enzymes in S. lycopersicum leaves, as the activity of POD, CAT, and SOD was respectively 52.21%, 75.31%, and 158.59% higher than that of the control and MDA content was 35.15% down from the control.[Conclusion] Through seed inoculation, C. cateniannulata colonizes in roots, stems, and leaves of S. lycopersicum, promoting the seedling growth and enhancing the antioxidant enzyme activity. Thus, this fungus has good application prospects in field.

    参考文献
    [1] Erdinc C, Ekincialp A, Gundogdu M, Eser F, Sensoy S. Bioactive components and antioxidant capacities of different miniature tomato cultivars grown by altered fertilizer applications. Journal of Food Measurement and Characterization, 2018, 12(3):1519-1529.
    [2] 林兴军. 不同水肥对日光温室番茄品质和抗氧化系统及土壤环境的影响. 中国科学院研究生院(教育部水土保持与生态环境研究中心)学位论文, 2011.
    [3] 刘欢, 姚拓, 李建宏, 刘婷, 张仲娟, 马骢毓. 丛枝菌根真菌对番茄生长的影响. 甘肃农业大学学报, 2017, 52(4):75-81, 89. Liu H, Yao T, Li JH, Liu T, Zhang ZJ, Ma CY. Effect of various arbuscular mycorrhizal fungi on growth of tomato. Journal of Gansu Agricultural University, 2017, 52(4):75-81, 89. (in Chinese)
    [4] Card S, Johnson L, Teasdale S, Caradus J. Deciphering endophyte behaviour:the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 2016, 92(8):fiw114.
    [5] Ownley BH, Gwinn KD, Vega FE. Endophytic fungal entomopathogens with activity against plant pathogens:ecology and evolution. BioControl, 2010, 55(1):113-128.
    [6] Gathage JW, Lagat ZO, Fiaboe KKM, Akutse KS, Ekesi S, Maniania NK. Prospects of fungal endophytes in the control of Liriomyza leafminer flies in common bean Phaseolus vulgaris under field conditions. BioControl, 2016, 61(6):741-753.
    [7] Russo ML, Scorsetti AC, Vianna MF, Cabello M, Ferreri N, Pelizza S. Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera:Noctuidae). Insects, 2019, 10(4):110.
    [8] Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota:Hypocreales). Mycological Research, 2007, 111(6):748-757.
    [9] 费泓强, 隋丽, 朱慧, 徐文静, 陈日曌, 汪洋洲, 李启云, 王德利. 球孢白僵菌在玉米苗期的定殖及其对玉米生理生化特性的影响. 中国生物防治学报, 2016, 32(6):721-727. Fei HQ, Sui L, Zhu H, Xu WJ, Chen RZ, Wang YZ, Li QY, Wang DL. Colonization of Beauveria bassiana in maize seedlings and its effect on their physiological-biochemical characteristics. Chinese Journal of Biological Control, 2016, 32(6):721-727. (in Chinese)
    [10] Jaber LR, Enkerli J. Fungal entomopathogens as endophytes:can they promote plant growth? Biocontrol Science and Technology, 2017, 27(1):28-41.
    [11] Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012, 99(1):101-107.
    [12] Vega FE. The use of fungal entomopathogens as endophytes in biological control:a review. Mycologia, 2018, 110(1):4-30.
    [13] Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen MJ, Li ZZ, Rossman AY, Spatafora JW, Shrestha B. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus, 2017, 8(2):335-353.
    [14] 许忠顺, 薛原, 张丽, 王真娣, 曾召英, 杨茂发, 邹晓. 防治斜纹夜蛾蛹和2龄幼虫的棒束孢菌株筛选. 植物保护, 2020, 46(5):93-101. Xu ZS, Xue Y, Zhang L, Wang ZD, Zeng ZY, Yang MF, Zou X. Screening of Isaria isolates for controlling the pupae and second-instar larvae of Spodoptera litura. Plant Protection, 2020, 46(5):93-101. (in Chinese)
    [15] Oliveira DGP, Pauli G, Mascarin GM, Delalibera I. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. Journal of Microbiological Methods, 2015, 119:44-52.
    [16] Akutse KS, Maniania NK, Fiaboe KKM, Van Den Berg J, Ekesi S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera:Agromyzidae). Fungal Ecology, 2013, 6(4):293-301.
    [17] Schulz B, Guske S, Dammann U, Christine B. Endophyte-host interactions II defining symbiosis of the endophyte-host interaction. Symbiosis, 1998, 25(1):213-227.
    [18] 许忠顺. 烟田表层土壤环境对环链棒束孢防控斜纹夜蛾的影响. 贵州大学硕士学位论文, 2020.
    [19] Jaber LR, Enkerli J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 2016, 103:187-195.
    [20] 王定锋, 杨广, 王庆森, 曾明森, 吴光远. 两株棒束孢菌的鉴定及其对茶卷叶蛾和茶小卷叶蛾的致病力. 植物保护学报, 2014, 41(5):531-539. Wang DF, Yang G, Wang QS, Zeng MS, Wu GY. Identification of two Isaria isolates and bioassay of their pathogenicity against tea Tortrix Homona coffearia and smaller tea Tortrix Adoxophyes honmai. Acta Phytophylacica Sinica, 2014, 41(5):531-539. (in Chinese)
    [21] Brownbridge M, Reay SD, Nelson TL, Glare TR. Persistence of Beauveria bassiana (Ascomycota:Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 2012, 61(3):194-200.
    [22] Kabaluk JT, Ericsson JD. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal, 2007, 99(5):1377-1381.
    [23] Liao XG, O'Brien TR, Fang WG, St Leger RJ. The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 2014, 98(16):7089-7096.
    [24] Qayyum MA, Wakil W, Arif MJ, Sahi ST, Dunlap CA. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biological Control, 2015, 90:200-207.
    [25] Dash CK, Bamisile BS, Keppanan R, Qasim M, Lin YW, Islam SU, Hussain M, Wang LD. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari:Tetranychidae). Microbial Pathogenesis, 2018, 125:385-392.
    [26] Qin X, Zhao X, Huang SS, Deng J, Li XB, Luo ZB, Zhang YJ. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Management Science, 2021, 77(4):2007-2018.
    [27] Liao XG, Lovett B, Fang WG, St Leger RJ. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology:Reading, England, 2017, 163(7):980-991.
    [28] Tall S, Meyling NV. Probiotics for plants? growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial Ecology, 2018, 76(4):1002-1008.
    [29] García JE, Posadas BJ, Perticari A, Lecuona RE. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 2011, 5(1):22-27.
    [30] Zheng P, Xia YL, Zhang SW, Wang CS. Genetics of Cordyceps and related fungi. Applied Microbiology and Biotechnology, 2013, 97(7):2797-2804.
    [31] Sánchez-Rodríguez AR, Del-Campillo MC, Quesada- Moraga E. Beauveria bassiana:an entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae, 2015, 197:193-202.
    [32] Ahmad I, Jiménez-Gasco MDM, Luthe DS, Shakeel SN, Barbercheck ME. Endophytic Metarhizium robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biological Control, 2020, 144:104167.
    [33] Bernstein ME, Carroll GC. Internal fungi in old-growth Douglas fir foliage. Canadian Journal of Botany, 1977, 55(6):644-653.
    [34] Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE. Fungal entomopathogens:new insights on their ecology. Fungal Ecology, 2009, 2(4):149-159.
    [35] 孔亚丽, 朱春权, 曹小闯, 朱练峰, 金千瑜, 洪小智, 张均华. 土壤微生物介导植物抗盐性机理的研究进展. 中国农业科学, 2021, 54(10):2073-2083. Kong YL, Zhu CQ, Cao XC, Zhu LF, Jin QY, Hong XZ, Zhang JH. Research progress of soil microbial mechanisms in mediating plant salt resistance. Scientia Agricultura Sinica, 2021, 54(10):2073-2083. (in Chinese)
    [36] Tang J, Wang SQ, Hu KD, Huang ZQ, Li YH, Han Z, Chen XY, Hu LY, Yao GF, Zhang H. Antioxidative capacity is highly associated with the storage property of tuberous roots in different sweetpotato cultivars. Scientific Reports, 2019, 9:11141.
    [37] 张晓梦, 田永强, 潘晓梅, 李佳佳, 石晓玲, 张建强, 吴康莉. 2株木霉抑菌效果及其促植物生长机制. 南方农业学报, 2020, 51(11):2713-2721. Zhang XM, Tian YQ, Pan XM, Li JJ, Shi XL, Zhang JQ, Wu KL. Antifungal effect and plant growth promoting mechanism of two Trichoderma strains. Journal of Southern Agriculture, 2020, 51(11):2713-2721. (in Chinese)
    [38] 台莲梅, 高俊峰, 左豫虎, 靳学慧, 张亚玲, 李海燕. 长枝木霉菌T115D诱导大豆叶片防御酶活性及疫病盆栽防治效果. 中国生物防治学报, 2018, 34(6):897-905. Tai LM, Gao JF, Zuo YH, Jin XH, Zhang YL, Li HY. Induction of defense enzymes activities in soyben and control effect of Phytophthora root rot in flowerpot by Trichoderma longibrachiaum T115D. Chinese Journal of Biological Control, 2018, 34(6):897-905. (in Chinese)
    [39] Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes:diversity and functional roles. New Phytologist, 2009, 182(2):314-330.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

管景强,许忠顺,刘京,芶剑渝,邹晓. 环链虫草Cordyceps cateniannulata对番茄生长和抗氧化酶活性的影响[J]. 微生物学报, 2022, 62(3): 1119-1130

复制
分享
文章指标
  • 点击次数:364
  • 下载次数: 1066
  • HTML阅读次数: 1187
  • 引用次数: 0
历史
  • 收稿日期:2021-07-08
  • 最后修改日期:2021-09-22
  • 在线发布日期: 2022-03-07
文章二维码