少根根霉产孢能力、变种与发酵产物的相关性
作者:
基金项目:

国家自然科学基金(31970009);科技部科技基础性工作专项(2014FY210400);省部共建云南生物资源保护与利用国家重点实验室开放课题(2019KF002)


The correlations of fermentation metabolites with sporulation capability and varieties of Rhizopus arrhizus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】探究少根根霉不同生态环境、不同地理位置、不同产孢能力和不同分类学变种的发酵产物多样性及相关性,为工业生产提供指导。【方法】代表性的68株少根根霉菌株于糯米培养基中进行液态发酵,利用高效液相色谱法测定各种发酵产物浓度,计算发酵产物间的Pearson相关系数,通过多因素方差分析和主成分分析解析各类菌株与发酵特性的相关性。【结果】总计检测到7种发酵产物,按照产量均值百分比从高到低分别是葡萄糖(70.96%)、乙醇(17.87%)、乳酸(6.63%)、麦芽糖(1.80%)、苹果酸(1.46%)、富马酸(0.92%)和甘油(0.36%)。麦芽糖独立代谢,其余6种产物分为2组,组间负相关:第一组为葡萄糖、乳酸和甘油,组内正相关;第二组为乙醇、苹果酸和富马酸,组内正相关。发酵特性与生态环境、地理位置的相关性较低,但与产孢能力、分类学变种高度相关。SM无孢菌株的发酵能力显著强于SM产孢菌株,尤其是菌株XY01957的葡萄糖产量高达138.30 g/L,具有出色的生产潜力。原变种和东京变种的富马酸、苹果酸产量较低,而乳酸和甘油产量较高;德氏变种与前两个变种区分明显,富马酸、苹果酸产量较高,而乳酸和甘油产量较低。【结论】本研究发现少根根霉发酵产物之间以及发酵产物和产孢能力、分类学变种之间高度相关,为群体遗传学研究奠定了良好的基础;本研究筛选出优质的发酵菌株,为发酵工业提供了坚实的支撑。

    Abstract:

    [Objective] In order to provide guidance for industrial production, this study investigated the diversity and correlation of metabolites among Rhizopus arrhizus strains in different ecological habitats, in different geographical locations, with different sporulation capacities, and of different taxonomic varieties.[Methods] Sixty-eight representative strains of R. arrhizus were inoculated in glutinous rice media for liquid fermentation, and the yields of secondary metabolites were determined by high-performance liquid chromatography. Pearson correlation coefficients between fermentation products were calculated. The correlation between strains and fermentation characteristics was assessed by multivariate analysis of variance and principal component analysis.[Results] A total of seven fermentation products were detected, including glucose (average yield in percentage:70.96%), ethanol (17.87%), lactic acid (6.63%), maltose (1.80%), malic acid (1.46%), fumaric acid (0.92%), and glycerin (0.36%). Maltose was metabolized independently, while the other six were divided into two groups with a negative inter-group correlation. The first group contained glucose, lactic acid, and glycerol, which were positively correlated with each other. The second group included ethanol, malic acid, and fumaric acid, also showing positive correlations. Fermentation characteristics were significantly correlated with sporulation capacities and taxonomic varieties, while slightly with ecological habitats and geographical locations. The strains not producing spores in synthetic mucor liquid medium had significantly stronger fermentation ability of than the SM spore-producing strains. In particular, strain XY01957 had the potential for industrial production since it could produce glucose at a yield as much as 138.30 g/L. The varieties arrhizus and tonkinensis had lower content of fumaric acid and malic acid while higher content of lactic acid and glycerin, whereas delemar was obviously opposite to the two varieties above with respect to all these components.[Conclusion] This study demonstrated high correlations among fermentation metabolites, sporulation capacities, and taxonomic varieties of R. arrhizus, laying a sound foundation for population genetic research. Some high-quality strains were screened out, providing solid support for the fermentation industry.

    参考文献
    [1] Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, Van Nieukerken EJ, Penev L. Species 2000& ITIS Catalogue of Life. Species 2000:Naturalis, Leiden, the Netherlands. https://www.catalogueoflife.org. Accessed on Jan 27, 2021.
    [2] Kwon JH, Kim J, Kim WI. First report of Rhizopus oryzae as a postharvest pathogen of apple in Korea. Mycobiology, 2011, 39(2):140-142.
    [3] Cheng Y, Gao Y, Liu XY, Wang GY, Zhang GQ, Gao SQ. Rhinocerebral mucormycosis caused by Rhizopus arrhizus var. tonkinensis. Journal De Mycologie Medicale, 2017, 27(4):586-588.
    [4] Rani R, Ghosh S. Production of phytase under solid-state fermentation using Rhizopus oryzae:novel strain improvement approach and studies on purification and characterization. Bioresource Technology, 2011, 102(22):10641-10649.
    [5] 刘金梅, 张凤英. 根霉在发酵工业与环境科学中的研究进展. 生物技术通报, 2013(11):26-33. Liu JM, Zhang FY. Research progress of Rhizopus in fermentation industry and environmental science. Biotechnology Bulletin, 2013(11):26-33. (in Chinese)
    [6] Abd Razak DL, Abd Rashid NY, Jamaluddin A, Sharifudin SA, Abd Kahar A, Long K. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. Journal of the Saudi Society of Agricultural Sciences, 2017, 16(2):127-134.
    [7] Dung NTP. Defined fungal starter granules for purple glutinous rice wine. The Netherlands:Wageningen University, DPhil thesis, 2004.
    [8] Jin B, Huang LP, Lant P. Rhizopus arrhizus-a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnology Letters, 2003, 25(23):1983-1987.
    [9] 田三德, 吴艳娜, 徐新丽. 混合发酵法生产L-苹果酸的工艺研究及浅析. 食品科技, 2009, 34(3):232-234, 239. Tian SD, Wu YN, Xu XL. Research on the hybrid fermentation to develop L-malic acid. Food Science and Technology, 2009, 34(3):232-234, 239. (in Chinese)
    [10] Das RK, Brar SK. Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526. Applied Biochemistry and Biotechnology, 2014, 172(6):2974-2988.
    [11] Guneser O, Demirkol A, Yuceer YK, Togay SO, Hosoglu MI, Elibol M. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology, 2017, 48(2):275-285.
    [12] Zhang BH, Yang ST. Metabolic engineering of Rhizopus oryzae:effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry, 2012, 47(12):2159-2165.
    [13] Huang D, Wang R, Du WJ, Wang GY, Xia ML. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol. Bioresource Technology, 2015, 196:263-272.
    [14] Xu Q, Liu Y, Li S, Jiang L, Huang H, Wen JP. Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production. Bioprocess and Biosystems Engineering, 2016, 39(8):1267-1280.
    [15] 林晓庆, 黄志清, 刘志彬, 张雯, 倪莉. 米根霉液态发酵产糖化酶工艺条件研究. 酿酒科技, 2014(9):9-13. Lin XQ, Huang ZQ, Liu ZB, Zhang W, Ni L. Optimization of the technical process for the production of glucoamylase by liquid fermentation of Rhizopus oryzae. Liquor-Making Science & Technology, 2014(9):9-13. (in Chinese)
    [16] Wang Z, Wang YL, Yang ST, Wang RG, Ren HQ. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bioresource Technology, 2010, 101(14):5557-5564.
    [17] Liu H, Hu HR, Jin YH, Yue XM, Deng L, Wang F, Tan TW. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 2017, 233:30-33.
    [18] 和晶晶, 伍时华, 伍保龙, 王琨, 应玲云, 夏杰, 黄翠姬, 易弋. 高糖化力米根霉的筛选和鉴定. 中国调味品, 2014, 39(10):1-6, 14. He JJ, Wu SH, Wu BL, Wang K, Ying LY, Xia J, Huang CJ, Yi Y. Screening and identification of high saccharifying Rhizopus oryzae. China Condiment, 2014, 39(10):1-6, 14. (in Chinese)
    [19] Roa Engel CA, Straathof AJJ, Zijlmans TW, Gulik WM, Wielen LAM. Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 2008, 78(3):379-389.
    [20] Yu SZ, Huang D, Wen JP, Li S, Chen YL, Jia XQ. Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresource Technology, 2012, 114:610-615.
    [21] Saito K, Saito A, Ohnishi M, Oda Y. Genetic diversity in Rhizopus oryzae strains as revealed by the sequence of lactate dehydrogenase genes. Archives of Microbiology, 2004, 182(1):30-36.
    [22] Londoño-Hernández L, Ramírez-Toro C, Ruiz HA, Ascacio-Valdés JA, Aguilar-Gonzalez MA, Rodríguez-Herrera R, Aguilar CN. Rhizopus oryzae-ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 2017, 257:110-127.
    [23] Zheng RY, Chen GQ, Huang H, Li XY. A monograph of Rhizopus. Sydowia, 2007, 59(2):273-282.
    [24] Liu XY, Huang H, Zheng RY. Delimitation of Rhizopus varieties based on IGS rDNA sequences. Sydowia, 2008, 60(1):93-112.
    [25] Dolatabadi S, De Hoog GS, Meis JF, Walther G. Species boundaries and nomenclature of Rhizopus arrhizus (syn. R. oryzae). Mycoses, 2014, 57:108-127.
    [26] Ellis JJ, Rhodes LJ, Hesseltine CW. The genus amylomyces. Mycologia, 1976, 68(1):131-143.
    [27] Wang HL, Swain EW, Hesseltine CW. Glucoamylase of Amylomyces rouxii. Journal of Food Science, 1984, 49(4):1210-1211.
    [28] Abe A, Oda Y, Asano K, Sone T. Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia, 2007, 99(5):714-722.
    [29] Kito H, Abe A, Sujaya In, Oda Y, Asano K, Sone T. Molecular characterization of the relationships among Amylomyces rouxii, Rhizopus oryzae, and Rhizopus delemar. Bioscience, Biotechnology, and Biochemistry, 2009, 73(4):861-864.
    [30] 鞠笑, 张明晢, 赵恒, 刘泽, 贾碧丝, Timothy Y.James, 乔敏, 刘小勇. 基因组SNP揭示少根根霉种群结构. 菌物学报, 2020, 39(12):2285-2303. Ju X, Zhang MZ, Zhao H, Liu Z, Jia BS, James T, Qiao M, Liu XY. Genomic SNPs reveal population structure of Rhizopus arrhizus. Mycosystema, 2020, 39(12):2285-2303. (in Chinese)
    [31] 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6):533-548. Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD. Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6):533-548. (in Chinese)
    [32] IBM Corp. IBM SPSS Statistics for Windows. Version 19.0, Armonk, NY:IBM Corp, 2010.
    [33] Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8:new features for data integration and network visualization. Bioinformatics, 2010, 27(3):431-432.
    [34] Metsalu T, Vilo J. ClustVis:a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 2015, 43(W1):W566-W570.
    [35] 龙可, 赵中开, 马莹莹, 杨建刚. 酿酒根霉菌研究进展. 现代食品科技, 2013, 29(2):443-447. Long K, Zhao ZK, Ma YY, Yang JG. Progresses of researches on Rhizopus for liquor-making. Modern Food Science and Technoloronmental Microbiology, 2009, 75(9):2982-2986.刼镢虲>[霵攴] 屄桵桡靮嬠酓孆餬夠呈赡癮张呐J,頠呗硡穮乧张卑M, Liu WQ, Shi JY, Li K, Zhang XL, Bai FY. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, 2018, 9:2690.] 刘宁, 张昆, 何皓, 李霜, 嵇松扬, 黄和. 响应面法优化少根根霉发酵合成富马酸. 食品与发酵工业, 2008, 34(7):64-67. Liu N, Zhang K, He H, Li S, Ji SY, Huang H. Optimizing fermentation conditions for fumaric acid using response surface analysis. Food and Fermentation Industries, 2008, 34(7):64-67. (in Chinese)
    [38] 王旭亮, 王异静, 王德良, 张五九. 白酒发酵高糖化性能霉菌的筛选及鉴定. 酿酒科技, 2012(9):22-28. Wang XL, Wang YJ, Wang DL, Zhang WJ. Screening and identification of mold strains with high saccharifying properties for improving ethanol fermentation efficiency in liquor production. Liquor-Making Science & Technology, 2012(9):22-28. (in Chinese)
    [39] 刘凡, 周新虎, 陈翔, 陈坚, 堵国成, 方芳. 洋河浓香型白酒发酵过程酒醅微生物群落结构解析及其与有机酸合成的相关性. 微生物学报, 2018, 58(12):2087-2099. Liu F, Zhou XH, Chen X, Chen J, Du GC, Fang F. Microbial community of fermented grains and its correlation with organic acids biosynthesis during Yanghe strong-aroma liquor manufacturing process. Acta Microbiologica Sinica, 2018, 58(12):2087-2099. (in Chinese)
    [40] Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2006, 40(1):138-144.
    [41] Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ. Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass and Bioenergy, 2009, 33(5):828-833.
    [42] 张凤英, 董开发, 涂瑾. 根霉酒精发酵特性的研究. 食品科学, 2002, 23(8):158-159.
    [43] 赵宏宇, 赵靖, 郑春丽, 白云. 米根霉乳酸发酵的研究进展. 天津化工, 2007, 21(1):7-9.
    [44] Yin PM, Nishina N, Kosakai Y, Yahiro K, Pakr Y, Okabe M. Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. Journal of Fermentation and Bioengineering, 1997, 84(3):249-253.
    [45] 孙小龙, 付永前. 米根霉复合诱变筛选高产L-乳酸的形态突变菌株及碳代谢流分析. 江苏农业科学, 2019, 47(1):294-299. Sun XL, Fu Yongqian. Screening of morphological mutant strains with high yield of L-lactic acid by Rhizopus oryzae complex mutagenesis and carbon metabolic flux analysis. Jiangsu Agricultural Sciences, 2019, 47(1):294-299. (in Chinese)
    [46] Yan SB, Wang SC, Wei GG, Zhang KG. Investigation of the main parameters during the fermentation of Chinese Luzhou-f lavour liquor. Journal of the Institute of Brewing, 2015, 121(1):145-154.
    [47] Wright BE, Longacre A, Reimers J. Models of metabolism in Rhizopus oryzae. Journal of Theoretical Biology, 1996, 182(3):453-457.
    [48] Vodnar DC, Dulf FV, Pop OL, Socaciu C. L(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microbial Cell Factories, 2013, 12:92.
    [49] 何皓, 李霜, 徐晴, 张凯, 黄和. 放线菌酮对米根霉积累L-苹果酸代谢途径的调控作用. 过程工程学报, 2009, 9(1):153-156. He H, Li S, Xu Q, Zhang K, Huang H. Effect of cycloheximide on regulation of metabolic pathway for L-malic acid accumulation by Rhizopus oryzae. The Chinese Journal of Process Engineering, 2009, 9(1):153-156. (in Chinese)
    [50] Zhou YQ, Nie KL, Zhang X, Liu SH, Wang M, Deng L, Wang F, Tan TW. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresource Technology, 2014, 163:48-53.
    [51] Ellis JJ. Species and varieties in the Rhizopus arrhizus-Rhizopus oryzae group as indicated by their DNA complementarity. Mycologia, 1985, 77(2):243-247.
    [52] Chibucos MC, Soliman S, Gebremariam T, Lee H, Daugherty S, Orvis J, Shetty AC, Crabtree J, Hazen TH, Etienne KA, Kumari P, O'Connor TD, Rasko DA, Filler SG, Fraser CM, Lockhart SR, Skory CD, Ibrahim AS, Bruno VM. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nature Communications, 2016, 7:12218.
    [53] Lackner G, Möbius N, Scherlach K, Partida-Martinez LP, Winkler R, Schmitt I, Hertweck C. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus symbiosis. Applied and Envi
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘晓玲,鞠笑,贾碧丝,Timothy Y James,乔敏,刘小勇. 少根根霉产孢能力、变种与发酵产物的相关性[J]. 微生物学报, 2022, 62(3): 1131-1149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-08
  • 最后修改日期:2021-08-04
  • 在线发布日期: 2022-03-07
文章二维码