环境中胞内胞外抗性基因的分离检测、分布与传播
作者:
基金项目:

国家重点研发计划(2020YFC1806900);浙江省教育厅科研项目(Y202045606)


Isolation,detection,distribution,and transmission of intracellular and extracellular antibiotic resistance genes in the environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    抗生素抗性基因(ARGs)传播对人类健康具有潜在的风险。胞内抗性基因(iARGs)和胞外抗性基因(eARGs)是抗生素抗性基因的两种存在形式,其在不同环境介质中的分布与传播过程具有截然不同的特征。本文首先基于ARGs赋存形态的差异,对染色体抗性基因、质粒抗性基因、噬菌体抗性基因等ARGs的胞内/胞外分类给予明确界定,并根据环境样品来源归纳了现有分离检测技术的应用场景,总结了iARGs和eARGs在养殖场、污水处理厂、河道、海洋、大气等环境中的分布特征,同时比较了其在传播方式和传播能力上的差异,以期为ARGs的分类阻控和健康风险评估提供理论参考。

    Abstract:

    The transmission of antibiotic resistance genes (ARGs) is a potential threat to human health.ARGs are present as both intracellular and extracellular fractions of DNA in the environment.Intracellular ARGs (iARGs) and extracellular ARGs (eARGs) have different distribution and transmission characteristics in different environments.In this paper,we first categorized chromosomal,plasmid-borne,phage-associated ARGs into iARGs and eARGs with regarding to their occurrence states,and then summarized the methods for the isolation and detection of iARGs and eARGs from soil,water,and the atmosphere.Afterwards,we described the abundance distribution of iARGs and eARGs in livestock and aquaculture farmlands,wastewater treatment plants,rivers,oceans,and the atmosphere and compared their transmission methods and ability.This paper is expected to provide a theoretical reference for the control and assessment of the health risks of ARGs in the future.

    参考文献
    [1] O'Neill J. Tackling drug-resistant infections globally:final report and recommendations. London:Government of the United Kingdom, 2016.
    [2] Pruden A, Pei RT, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado. Environmental Science& Technology, 2006, 40(23):7445-7450.
    [3] D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. Antibiotic resistance is ancient. Nature, 2011, 477(7365):457-461.
    [4] Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental Health Perspectives, 2012, 120(8):1100-1106.
    [5] Mao DQ, Luo Y, Mathieu J, Wang Q, Feng L, Mu QH, Feng CY, Alvarez PJJ. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science& Technology, 2014, 48(1):71-78.
    [6] Zhang YP, Snow DD, Parker D, Zhou Z, Li X. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environmental Science& Technology, 2013, 47(18):10206-10213.
    [7] Zarei-Baygi A, Smith AL. Intracellular versus extracellular antibiotic resistance genes in the environment:prevalence, horizontal transfer, and mitigation strategies. Bioresource Technology, 2021, 319:124181.
    [8] Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 2016, 7:173.
    [9] Poté J, Ceccherini MT, Van VT, Rosselli W, Wildi W, Simonet P, Vogel TM. Fate and transport of antibiotic resistance genes in saturated soil columns. European Journal of Soil Biology, 2003, 39(2):65-71.
    [10] Dong PY, Wang H, Fang TT, Wang Y, Ye QH. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environment International, 2019, 125:90-96.
    [11] Wang DN, Liu L, Qiu ZG, Shen ZQ, Guo X, Yang D, Li J, Liu WL, Jin M, Li JW. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water. Water Research, 2016, 92:188-198.
    [12] Zhang Y, Li AL, Dai TJ, Li FF, Xie H, Chen LJ, Wen DH. Cell-free DNA:a neglected source for antibiotic resistance genes spreading from WWTPs. Environmental Science& Technology, 2018, 52(1):248-257.
    [13] Yu KF, Li P, He YL, Zhang B, Chen YH, Yang JH. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants. Water Research, 2020, 187:116450.
    [14] He TT, Jin L, Xie JW, Yue SY, Fu PQ, Li XD. Intracellular and extracellular antibiotic resistance genes in airborne PM2.5 for respiratory exposure in urban areas. Environmental Science& Technology Letters, 2021, 8(2):128-134.
    [15] Yuan QB, Huang YM, Wu WB, Zuo PX, Hu N, Zhou YZ, Alvarez PJJ. Redistribution of intracellular and extracellular free& adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. Environment International, 2019, 131:104986.
    [16] Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Applied and Environmental Microbiology, 2005, 71(1):46-50.
    [17] Prescott LM.微生物学:中文版.北京:高等教育出版社, 2003.
    [18] 吴楠,杨静慧,张伟玉,杨帆,曾明.不同环境介质中抗生素耐药性的检测方法研究进展.微生物学通报, 2016, 43(12):2720-2729. Wu N, Yang JH, Zhang WY, Yang F, Zeng M. Progress in detection methods of antibiotic resistance in different environmental matrices. Microbiology China, 2016, 43(12):2720-2729.(in Chinese)
    [19] Guo XP, Yang Y, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Garner E, Xu J, Liu M, Hochella MF Jr.. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129:277-286.
    [20] Yuan K, Wang XW, Chen X, Zhao ZQ, Fang L, Chen BY, Jiang J, Luan TG, Chen BW. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere, 2019, 234:520-527.
    [21] Zhou S, Zhu YJ, Yan Y, Wang WG, Wang YY. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome. Water Research, 2019, 161:610-620.
    [22] Zhao Z, Zhang K, Wu N, Li WJ, Xu WA, Zhang Y, Niu ZG. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes:a high-throughput analysis in Haihe Estuary in China. Environment International, 2020, 135:105385.
    [23] Sui QW, Chen YL, Yu DW, Wang T, Hai YL, Zhang JY, Chen MX, Wei YS. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environment International, 2019, 133:105183.
    [24] Liu SS, Qu HM, Yang D, Hu H, Liu WL, Qiu ZG, Hou AM, Guo JH, Li JW, Shen ZQ, Jin M. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 2018, 136:131-136.
    [25] 付树森,王艺,王肖霖,王尚杰,程远,卞博,张生博,袁青彬.结合态和游离态胞外抗性基因在城市污水氯和紫外消毒过程中的产生特征.中国环境科学, 2021:1-8. Fu SS, Wang Y, Wang XL, Wang SJ, Cheng Y, Bian B, Zhang SB, Yuan QB. Generation of extracellular antibiotic resistance genes during municipal wastewater chlorination and UV disinfection. China Environmental Science, 2021:1-18.(in Chinese)
    [26] Zhu GB, Wang XM, Yang T, Su JQ, Qin Y, Wang SY, Gillings M, Wang C, Ju F, Lan BR, Liu CL, Li H, Long XE, Wang XM, Jetten MSM, Wang ZF, Zhu YG. Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 2021, 15(1):270-281.
    [27] Li J, Cao JJ, Zhu YG, Chen QL, Shen FX, Wu Y, Xu SY, Fan HQ, Da G, Huang RJ, Wang J, de Jesus AL, Morawska L, Chan CK, Peccia J, Yao MS. Global survey of antibiotic resistance genes in air. Environmental Science& Technology, 2018, 52(19):10975-10984.
    [28] 梁永兵,李海北,程春燕,师丹阳,陈郑珊,杨栋,孙栋良,邵一帆,李君文,金敏.天津市中心城区集中供应管网末梢水的抗生素耐药基因污染特征研究.生态毒理学报, 2021, 16(2):195-202. Liang YB, Li HB, Cheng CY, Shi DY, Chen ZS, Yang D, Sun DL, Shao YF, Li JW, Jin M. Profile of antibiotic resistance genes in the terminal tap water from the center area of Tianjin. Asian Journal of Ecotoxicology, 2021, 16(2):195-202.(in Chinese)
    [29] Hao H, Shi DY, Yang D, Yang ZW, Qiu ZG, Liu WL, Shen ZQ, Yin J, Wang HR, Li JW, Wang H, Jin M. Profiling of intracellular and extracellular antibiotic resistance genes in tap water. Journal of Hazardous Materials, 2019, 365:340-345.
    [30] Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community-and hospital-acquired Escherichia coli urinary tract infections:a systematic review and meta-analysis of observational studies. BMC Infectious Diseases, 2015, 15(1):545.
    [31] Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, Chen YS, Zhang T, Gillings MR, Su JQ. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2(4):16270.
    [32] Zhang YP, Niu ZG, Zhang Y, Zhang K. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them. Environmental Pollution, 2018, 236:126-136.
    [33] Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research, 2007, 6(1-2):37-53.
    [34] Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments:features, relevance and applications. Applied Microbiology and Biotechnology, 2018, 102(15):6343-6356.
    [35] Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science& Technology, 2014, 48(3):1819-1827.
    [36] Poly F, Chenu C, Simonet P, Rouiller J, Jocteur Monrozier L. Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir, 2000, 16(3):1233-1238.
    [37] Li B, Qiu Y, Zhang J, Liang P, Huang X. Conjugative potential of antibiotic resistance plasmids to activated sludge bacteria from wastewater treatment plants. International Biodeterioration & Biodegradation, 2019, 138:33-40.
    [38] Qiu Y, Zhang J, Li B, Wen XH, Liang P, Huang X. A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Science of the Total Environment, 2018, 642:582-590.
    [39] Li LG, Dechesne A, He ZM, Madsen JS, Nesme J, Sørensen SJ, Smets BF. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environmental Science& Technology Letters, 2018, 5(5):260-265.
    [40] Dang BJ, Mao DQ, Xu Y, Luo Y. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Research, 2017, 111:81-91.
    [41] Binh CTT, Heuer H, Kaupenjohann M, Smalla K. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecology, 2008, 66(1):25-37.
    [42] Guan J, Wasty A, Grenier C, Chan M. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms. Poultry Science, 2007, 86(4):610-613.
    [43] Wang Q, Mao DQ, Luo Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4. Environmental Science & Technology, 2015, 49(14):8731-8740.
    [44] Lin WF, Li S, Zhang ST, Yu X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Research, 2016, 91:331-338.
    [45] Zhang S, Wang Y, Song HL, Lu J, Yuan ZG, Guo JH. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environment International, 2019, 129:478-487.
    [46] Yu ZG, Wang Y, Lu J, Bond PL, Guo JH. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal, 2021, 15(7):2117-2130.
    [47] Wang Q, Liu L, Hou ZL, Wang LT, Ma D, Yang G, Guo SY, Luo JH, Qi LY, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Science of the Total Environment, 2020, 717:137055.
    [48] Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ Lee SH, Cho JC. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome, 2020, 8(1):75.
    [49] Calero-Cáceres W, Melgarejo A, Colomer-Lluch M, Stoll C, Lucena F, Jofre J, Muniesa M. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology, 2014, 48(13):7602-7611.
    [50] Wang MZ, Liu P, Zhou Q, Tao WY, Sun YX, Zeng ZL. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. Environmental Pollution, 2018, 238:291-298.
    [51] Calero-Cáceres W, Balcázar JL. Antibiotic resistance genes in bacteriophages from diverse marine habitats. Science of the Total Environment, 2019, 654:452-455.
    [52] Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, Muniesa M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environment International, 2018, 115:133-141.
    [53] Varga M, Kuntová L, Pantůček R, Mašlaňová I, Růžičková V, Doškař J. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiology Letters, 2012, 332(2):146-152.
    [54] Kenzaka T, Tani K, Nasu MS. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. The ISME Journal, 2010, 4(5):648-659.
    [55] Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Applied and Environmental Microbiology, 1998, 64(8):2780-2787.
    [56] Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Molecular Ecology, 2017, 26(13):3556-3571.
    [57] Yang QX, Qiang W, Zhuo KY. Effects of antibiotics and metal ions exposure on the natural transformation frequency of an antibiotic resistant plasmid. Fresenius Environmental Bulletin, 2017, 26(10):5732-5736.
    [58] Nielsen KM, Van Weerelt MD, Berg TN, Bones AM, Hagler AN, Van Elsas JD. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Applied and Environmental Microbiology, 1997, 63(5):1945-1952.
    [59] Lu NX, Zilles JL, Nguyen TH. Adsorption of extracellular chromosomal DNA and its effects on natural transformation of Azotobacter vinelandii. Applied and Environmental Microbiology, 2010, 76(13):4179-4184.
    [60] Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 2005, 3(9):711-721.
    [61] Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiology Reviews, 2013, 37(3):336-363.
    [62] Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation:prevalence, mechanisms and function. Research in Microbiology, 2007, 158(10):767-778.
    [63] Naquin A, Shrestha A, Sherpa M, Nathaniel R, Boopathy R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Bioresource Technology, 2015, 188:79-83.
    [64] Li HZ, Zhang DD, Yang K, An XL, Pu Q, Lin SM, Su JQ, Cui L. Phenotypic tracking of antibiotic resistance spread via transformation from environment to clinic by reverse D2O single-cell Raman probing. Analytical Chemistry, 2020, 92(23):15472-15479.
    [65] Lu J, Wang Y, Zhang S, Bond P, Yuan ZG, Guo JH. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Science of the Total Environment, 2020, 713:136621.
    [66] Ding CS, Pan J, Jin M, Yang D, Shen ZQ, Wang JF, Zhang B, Liu WL, Fu JL, Guo X, Wang DN, Chen ZL, Yin J, Qiu ZG, Li JW. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology, 2016, 10(8):1051-1060.
    [67] Mantilla-Calderon D, Plewa MJ, Michoud G, Fodelianakis S, Daffonchio D, Hong PY. Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1. Environmental Science & Technology, 2019, 53(11):6520-6528.
    [68] Zhang S, Wang Y, Lu J, Yu ZG, Song HL, Bond PL, Guo JH. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The ISME Journal, 2021, 15:2969-2985.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金亦豪,刘子述,胡宝兰. 环境中胞内胞外抗性基因的分离检测、分布与传播[J]. 微生物学报, 2022, 62(4): 1247-1259

复制
分享
文章指标
  • 点击次数:486
  • 下载次数: 1865
  • HTML阅读次数: 3005
  • 引用次数: 0
历史
  • 收稿日期:2021-08-10
  • 最后修改日期:2021-09-18
  • 在线发布日期: 2022-04-15
文章二维码