废水培养微藻藻种遴选及其组分积累的研究进展
作者:
基金项目:

国家重点研发计划(2017YFE0135500);国家自然科学基金(51908355);上海自然科学基金(19ZR1443700);上海科技创新行动计划(19DZ1204500)


Research progress on species screening and organic component accumulation in microalgae cultivation with wastewater
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    利用废水培养微藻能够降低微藻的培养成本,同时削减污染。微藻的蛋白质、多糖和油脂等组分是影响其后续资源化利用的重要因素。本文重点综述了以废水为基质培养微藻的研究进展,从组分积累的角度,分析了微藻种类的选择依据,探讨了影响微藻生长的因素和提高产量的方法,并对藻体中组分的合成机制进行了讨论,提出未来废水培养微藻技术面临的挑战和可能的解决方法。

    Abstract:

    Using wastewater to cultivate microalgae can reduce cultivation cost and pollution.Proteins,polysaccharides,and lipids of microalgae are major factors affecting the utilization of microalgae resources.The research progress on microalgae cultivation with wastewater as the substrate was reviewed.Centering on component accumulation,we expound the selection basis of microalgae species,the factors affecting microalgae growth,the methods to improve microalgae yield,and the synthesis mechanism of components in microalgae.Finally,we put forward the challenges and possible solutions for microalgae cultivation in the future.

    参考文献
    [1] Chen CY, Kuo EW, Nagarajan D, Ho SH, Dong CD, Lee DJ, Chang JS. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 2020, 302:122814.
    [2] Chen HH, Xue LL, Liang MH, Jiang JG. Sodium azide intervention, salinity stress and two-step cultivation of Dunaliella tertiolecta for lipid accumulation. Enzyme and Microbial Technology, 2019, 127:1-5.
    [3] Du HM, Ren JL, Li Z, Zhang HN, Wang K, Lin B, Zheng SM, Zhao CY, Meng CX, Gao ZQ. Plant growth regulators affect biomass, protein, carotenoid, and lipid production in Botryococcus braunii. Aquaculture International, 2020, 28(3):1319-1340.
    [4] Xu H, Miao XL, Wu QY. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006, 126(4):499-507.
    [5] Zhan JJ, Zhang Q, Qin MM, Hong Y. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production. Frontiers of Environmental Science& Engineering, 2016, 10(3):548-558.
    [6] Cuellar-Bermudez SP, Magdalena JA, Muylaert K, Gonzalez-Fernandez C. High methane yields in anaerobic digestion of the cyanobacterium Pseudanabaena sp. Algal Research, 2019, 44:101689.
    [7] Vieira Salla AC, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology, 2016, 209:133-141.
    [8] Wang XQ, Ruan ZH, Sheridan P, Boileau D, Liu Y, Liao W. Two-stage photoautotrophic cultivation to improve carbohydrate production in Chlamydomonas reinhardtii. Biomass and Bioenergy, 2015, 74:280-287.
    [9] Holman BWB, Malau-Aduli AEO. Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition, 2013, 97(4):615-623.
    [10] 高保燕,黄罗冬,张成武.微藻藻种的筛选和育种及基因工程改造.生物产业技术, 2016(4):27-31. Gao BY, Huang LD, Zhang CW. Screening, breeding and genetic engineering of microalgal algae species. Biotechnology& Business, 2016(4):27-31.(in Chinese)
    [11] Han XX, Hu XF, Yin QR, Li SH, Song CF. Intensification of brewery wastewater purification integrated with CO2 fixation via microalgae co-cultivation. Journal of Environmental Chemical Engineering, 2021, 9(4):105710.
    [12] Cechinel MAP, Mayer DA, Pozdniakova TA, Mazur LP, Boaventura RAR, De Souza AAU, De Souza SMA, Vilar VJP. Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chemical Engineering Journal, 2016, 286:1-15.
    [13] Qu FQ, Jin WB, Zhou X, Wang M, Chen C, Tu RJ, Han SF, He ZQ, Li SF. Nitrogen ion beam implantation for enhanced lipid accumulation of Scenedesmus obliquus in municipal wastewater. Biomass and Bioenergy, 2020, 134:105483.
    [14] Gao F, Li C, Yang ZH, Zeng GM, Mu J, Liu M, Cui W. Removal of nutrients, organic matter, and metal from domestic secondary effluent through microalgae cultivation in a membrane photobioreactor. Journal of Chemical Technology& Biotechnology, 2016, 91(10):2713-2719.
    [15] Xu YJ, Wang Y, Yang Y, Zhou DD. The role of starvation in biomass harvesting and lipid accumulation:co-culture of microalgae-bacteria in synthetic wastewater. Environmental Progress& Sustainable Energy, 2016, 35(1):103-109.
    [16] Kothari R, Pathak VV, Kumar V, Singh DP. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water:an integrated approach for treatment and biofuel production. Bioresource Technology, 2012, 116:466-470.
    [17] León-Vaz A, León R, Giráldez I, Vega JM, Vigara J. Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquatic Toxicology, 2021, 239:105941.
    [18] Xiong JQ, Kurade MB, Abou-Shanab RAI, Ji MK, Choi J, Kim JO, Jeon BH. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology, 2016, 205:183-190.
    [19] Ferreira A, Ribeiro B, Marques PASS, Ferreira AF, Dias AP, Pinheiro HM, Reis A, Gouveia L. Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes. Journal of Cleaner Production, 2017, 165:1316-1327.
    [20] Kim HC, Choi WJ, Chae A, Park J, Kim HJ, Song KG. Evaluating integrated strategies for robust treatment of high saline piggery wastewater. Water Research, 2016, 89:222-231.
    [21] Su ZF, Li X, Hu HY, Wu YH, Tsutomu N. Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresource Technology, 2011, 102(17):7627-7632.
    [22] Wang XX, Dao GH, Zhuang LL, Zhang TY, Wu YH, Hu HY. Enhanced simultaneous removal of nitrogen, phosphorous, hardness, and methylisothiazolinone from reverse osmosis concentrate by suspended-solid phase cultivation of Scenedesmus sp. LX1. Environment International, 2020, 139:105685.
    [23] Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou JT, Wilson KE, O'Leary SJB, McGinn PJ. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada:potential applications for wastewater remediation for biofuel production. Journal of Applied Phycology, 2012, 24(3):339-348.
    [24] Cheng HH, Narindri B, Chu H, Whang LM. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresource Technology, 2020, 303:122861.
    [25] 冯思然,朱顺妮,王忠铭.微藻污水处理研究进展.环境工程, 2019, 37(4):57-62. Feng SR, Zhu SN, Wang ZM. Microalgal wastewater treatment:a review. Environmental Engineering, 2019, 37(4):57-62.(in Chinese)
    [26] Wang Y, Ho SH, Cheng CL, Guo WQ, Nagarajan D, Ren NQ, Lee DJ, Chang JS. Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 2016, 222:485-497.
    [27] Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS. Microalgae biorefinery:high value products perspectives. Bioresource Technology, 2017, 229:53-62.
    [28] De Swaaf ME, Sijtsma L, Pronk JT. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 2003, 81(6):666-672.
    [29] Mallick N, Mandal S, Singh AK, Bishai M, Dash A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. Journal of Chemical Technology& Biotechnology, 2012, 87(1):137-145.
    [30] Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS. Microalgae-based biorefinery-from biofuels to natural products. Bioresource Technology, 2013, 135:166-174.
    [31] Oliveira CYB, Viegas TL, Silva MFO, Fracalossi DM, Lopes RG, Derner RB. Effect of trace metals on growth performance and accumulation of lipids, proteins, and carbohydrates on the green microalga Scenedesmus obliquus. Aquaculture International, 2020, 28(4):1435-1444.
    [32] Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 2013, 135:191-198.
    [33] Mata SN, De Souza Santos T, Cardoso LG, Andrade BB, Duarte JH, Costa JAV, Oliveira De Souza C, Druzian JI. Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process:production of carbohydrate-rich biomass. Bioresource Technology, 2020, 311:123495.
    [34] Wang Y, Ho SH, Cheng CL, Nagarajan D, Guo WQ, Lin C, Li SF, Ren NQ, Chang JS. Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 2017, 242:7-14.
    [35] Pereira MIB, Chagas BME, Sassi R, Medeiros GF, Aguiar EM, Borba LHF, Silva EPE, Neto JCA, Rangel AHN. Mixotrophic cultivation of Spirulina platensis in dairy wastewater:effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS One, 2019, 14(10):e0224294.
    [36] Xie TH, Xia Y, Zeng Y, Li XR, Zhang YK. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris:over-compensation strategy. Bioresource Technology, 2017, 233:247-255.
    [37] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜.小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果.中国生物工程杂志, 2019, 39(7):56-64. Wei ZJ, Li X, Wang HN, Yin YH, Xi LJ, Ge BS. Enhanced biomass production and lipid accumulation by co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp. China Biotechnology, 2019, 39(7):56-64.(in Chinese)
    [38] Wang L, Li YG, Sommerfeld M, Hu Q. A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 2013, 129:289-295.
    [39] Arutselvan C, Narchonai G, Pugazhendhi A, Lewis Oscar F, Thajuddin N. Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresource Technology, 2021, 339:125524.
    [40] Zhu JY, Wakisaka M. Application of lignosulfonate as the growth promotor for freshwater microalga Euglena gracilis to increase productivity of biomass and lipids. Fuel, 2021, 283:118920.
    [41] Brar A, Kumar M, Soni T, Vivekanand V, Pareek N. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource:a review. Bioresource Technology, 2021, 339:125597.
    [42] 田朝玉,叶晓,华威,王晚晴,刘文慧,许颖颖,程艳玲.基于污水处理的微藻培养研究进展.环境工程, 2016, 34(3):1-5. Tian CY, Ye X, Hua W, Wang WQ, Liu WH, Xu YY, Cheng YL. Research progress of microalgae cultivation using wastewater resources. Environmental Engineering, 2016, 34(3):1-5.(in Chinese)
    [43] Chu HQ, Tan XB, Zhang YL, Yang LB, Zhao FC, Guo J. Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors. Bioresource Technology, 2015, 185:40-48.
    [44] Luo L, He HJ, Yang CP, Wen S, Zeng GM, Wu MJ, Zhou ZL, Lou W. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresource Technology, 2016, 216:135-141.
    [45] 杨闯,王文国,马丹炜,汤晓玉,胡启春.耐高浓度沼液产油小球藻的分离鉴定与特征分析.环境科学, 2015, 36(7):2707-2712. Yang C, Wang WG, Ma DW, Tang XY, Hu QC. Isolation, identification and characteristic analysis of an oil-producing Chlorella sp. tolerant to high-strength anaerobic digestion effluent. Environmental Science, 2015, 36(7):2707-2712.(in Chinese)
    [46] Tan XB, Meng J, Tang Z, Yang LB, Zhang WW. Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 2020, 244:125509.
    [47] Hu B, Zhou WG, Min M, Du ZY, Chen P, Ma XC, Liu YH, Lei HW, Shi J, Ruan R. Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Applied Energy, 2013, 107:255-263.
    [48] Deng XY, Gao K, Zhang RC, Addy M, Lu Q, Ren HY, Chen P, Liu YH, Ruan R. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 2017, 243:417-425.
    [49] Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresource Technology, 2019, 275:109-122.
    [50] Sendra M, Moreno-Garrido I, Blasco J, Araújo CVM. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environmental Pollution, 2018, 242:357-366.
    [51] Lu YD, Xu J. Phytohormones in microalgae:a new opportunity for microalgal biotechnology?Trends in Plant Science, 2015, 20(5):273-282.
    [52] Zhao YT, Wang HP, Han BY, Yu XY. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae:a review. Bioresource Technology, 2019, 274:549-556.
    [53] Liu JY, Qiu W, Song YM. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Research, 2016, 18:273-280.
    [54] Hunt RW, Chinnasamy S, Bhatnagar A, Das KC. Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 2010, 162(8):2400-2414.
    [55] Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 2014, 37(4):735-741.
    [56] 万晓安,杨正健,杨林.光生物反应器中微藻生长影响因子研究进展.应用化工, 2016, 45(6):1140-1145, 1154. Wan XA, Yang ZJ, Yang L. Research progress on influencing of environmental factors on the growth of microalgae in the photobioreactor. Applied Chemical Industry, 2016, 45(6):1140-1145, 1154.(in Chinese)
    [57] Ye CP, Zhang MC, Yang YF, Thirumaran G. Photosynthetic performance in aquatic and terrestrial colonies of Nostoc flagelliforme(Cyanophyceae) under aquatic and aerial conditions. Journal of Arid Environments, 2012, 85:56-61.
    [58] 何振平,王秀云,樊晓旭,王冬冬.温度和光照对塔胞藻生长的影响.水产科学, 2007, 26(4):218-221. He ZP, Wang XY, Fan XX, Wang DD. Effects of temperature and illumination on growth in microalga Pyramimonas sp. Fisheries Science, 2007, 26(4):218-221.(in Chinese)
    [59] 王荣昌,程霞,曾旭.污水处理中菌藻共生系统去除污染物机理及其应用进展.环境科学学报, 2018, 38(1):13-22. Wang RC, Cheng X, Zeng X. Mechanisms and applications of bacterial-algal symbiotic systems for pollutant removal from wastewater. Acta Scientiae Circumstantiae, 2018, 38(1):13-22.(in Chinese)
    [60] Schuurmans RM, Van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ. Comparison of the photosynthetic yield of cyanobacteria and green algae:different methods give different answers. PLoS One, 2015, 10(9):e0139061.
    [61] Khan MI, Shin JH, Kim JD. The promising future of microalgae:current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 2018, 17(1):36.
    [62] Singh SP, Singh P. Effect of temperature and light on the growth of algae species:a review. Renewable and Sustainable Energy Reviews, 2015, 50:431-444.
    [63] Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing:Process Intensification, 2009, 48(6):1146-1151.
    [64] 崔龙波,彭国兴,吴雪,王琛,刘冉.微藻与细菌相互关系及其在水质改良中的应用.水产养殖, 2015, 36(10):36-41. Cui LB, Peng GX, Wu X, Wang C, Liu R. The relationship between microalgae and bacteria and its application in water quality improvement. Journal of Aquaculture, 2015, 36(10):36-41.(in Chinese)
    [65] Chen J, Leng LJ, Ye CS, Lu Q, Addy M, Wang JH, Liu J, Chen P, Ruan R, Zhou WG. A comparative study between fungal pellet-and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology, 2018, 259:181-190.
    [66] 孔苗.利用模拟产酸发酵液与酿醋废水培养小球藻Chlorella sp.的研究.江苏大学硕士学位论文, 2016.
    [67] Juneja A, Ceballos R, Murthy G. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production:a review. Energies, 2013, 6(9):4607-4638.
    [68] Gardner-Dale DA, Bradley IM, Guest JS. Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Research, 2017, 121:231-239.
    相似文献
    引证文献
引用本文

朱志浩,刘辉,邵留,叶建锋. 废水培养微藻藻种遴选及其组分积累的研究进展[J]. 微生物学报, 2022, 62(4): 1322-1333

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-25
  • 最后修改日期:2021-12-08
  • 在线发布日期: 2022-04-15
文章二维码