苏云金芽胞杆菌等离子复合体诱变提高抗鳞翅目害虫的杀虫毒力
作者:
基金项目:

国家重点研发计划(2017YFD0201201);国家自然科学基金(31370116)


Improvement of the virulence of Bacillus thuringiensis to lepidopteran pests by ARTP and NTG mutagenesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】苏云金芽胞杆菌(Bacillus thuringiensis,Bt) D18对鳞翅目、鞘翅目等农业害虫具有杀虫毒力,本研究拟通过复合诱变育种,筛选出杀虫毒力更高的突变菌。【方法】经四轮室温常压等离子体(ARTP)诱变和一轮ARTP-NTG复合诱变后,镜检形态观察与生物毒力测定筛选高毒力菌株,SDS-PAGE检测Cry蛋白,qRT-PCR定量cry基因的表达,揭示突变菌株毒力提高的原因。【结果】复合诱变筛选到2株高毒力突变菌株An-L5-1和An-L5-7,与出发菌株Bt D18相比,An-L5-1和An-L5-7的生长衰亡期略微提前;芽胞形成能力增强;Cry蛋白表达量分别提高了80.47%和88.31%;对小菜蛾和黏虫的杀虫毒力显著增强。【结论】突变菌株An-L5-1和An-L5-7杀虫活性提高主要是由于毒力基因cry1Aacry2Aa和调控基因sigK的表达显著上调。

    Abstract:

    [Objective] Bacillus thuringiensis(Bt) D18 is virulent to agricultural pests of Lepidoptera and Coleoptera.This study aims to improve the virulence of D18 by compound mutagenesis.[Methods] After four rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and one round of ARTP-N-methyl-N'-nitro-N-nitrosoguanidine (ARTP-NTG) mutagenesis,highly virulent mutants were screened out by microscopy and virulence bioassay.To reveal the reason for the increase of virulence,we detected the Cry proteins by SDS-PAGE and key cry genes by qRT-PCR.[Results] Two highly virulent mutants,An-L5-1 and An-L5-7 were screened out,compared with the wild strain D18,An-L5-1 and An-L5-7 demonstrated slightly early decline,improved ability of sporulation,80.47% and 88.31% rise of Cry protein expression,and significantly stronger virulence to Plutella xylostella and Mythimna seperata.[Conclusion] The increase in the virulence of An-L5-1 and An-L5-7 was mainly attributed to the significantly up-regulated expression of cry1Aa,cry2Aa,and sigK.

    参考文献
    [1] Roh JY, Choi JY, Li MS, Jin BR, Je YH. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology, 2007, 17(4):547-559.
    [2] Darsi S, Divya Prakash G, Udayasuriyan V. Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Biotechnology Letters, 2010, 32(9):1311-1315.
    [3] Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806.
    [4] Okinaka RT, Keim P. The phylogeny of Bacillus cereus sensu lato. Microbiology Spectrum, 2016, 4(1):tbs0012-2012.
    [5] Bravo A, Likitvivatanavong S, Gill SS, Soberón M. Bacillus thuringiensis:a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 2011, 41(7):423-431.
    [6] Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 2004, 1667(1):38-46.
    [7] Hofmann C, Lüthy P, Hütter R, Pliska V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). European Journal of Biochemistry, 1988, 173(1):85-91.
    [8] Campbell GA, Mutharasan R. Method of measuring Bacillus anthracis spores in the presence of copious amounts of Bacillus thuringiensis and Bacillus cereus. Analytical Chemistry, 2007, 79(3):1145-1152.
    [9] Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 2007, 71(2):255-281.
    [10] Daniell H. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal, 2006, 1(10):1071-1079.
    [11] Tabashnik BE, Huang FN, Ghimire MN, Leonard BR, Siegfried BD, Rangasamy M, Yang YJ, Wu YD, Gahan LJ, Heckel DG, Bravo A, Soberón M. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology, 2011, 29(12):1128-1131.
    [12] James C. Global status of commercialized biotech/GM crops:2011. ht tp. Bried, 2011, 43:8-9.
    [13] Talekar NS, Shelton AM. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 1993, 38(1):275-301.
    [14] Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management:problems, progress, and prospects. Annual Review of Entomology, 2013, 58:517-541.
    [15] Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella(Lepidoptera:Plutellidae):just how long is a piece of string?Journal of Economic Entomology, 2012, 105(4):1115-1129.
    [16] Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 2014, 98(12):5387-5396.
    [17] Ottenheim C, Nawrath M, Wu JC. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP):the latest development. Bioresources and Bioprocessing, 2018, 5(1):1-14.
    [18] Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, Li HP, Oda Y, Xing XH. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Applied Microbiology and Biotechnology, 2015, 99(13):5639-5646.
    [19] Yang MM, An YF, Zabed HM, Guo Q, Yun JH, Zhang GY, Awad FN, Sun WJ, Qi XH. Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresource Technology, 2019, 284:188-196.
    [20] Gu CK, Wang GY, Mai S, Wu PF, Wu JR, Wang GH, Liu HJ, Zhang JN. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 2017, 101(5):2189-2199.
    [21] Ma YF, Shen W, Chen XZ, Liu L, Zhou ZM, Xu F, Yang HQ. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. Journal of Biological Engineering, 2016, 10:13.
    [22] Zhao B, Li YF, Li CL, Yang HL, Wang W. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Applied Microbiology and Biotechnology, 2018, 102(5):2351-2361.
    [23] Xu F, Jin HJ, Li HM, Tao L, Wang JP, Lv J, Chen SF. Genome shuffling of Trichoderma viride for enhanced cellulase production. Annals of Microbiology, 2012, 62(2):509-515.
    [24] Delić V, Hopwood DA, Friend EJ. Mutangenesis by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutation Research, 1970, 9(2):167-182.
    [25] Siripong P. Enhanced cellulose production by ultraviolet (UV) irradiation and N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis of an Acetobacter species isolate. African Journal of Biotechnology, 2012, 11(6):1433-1442.
    [26] Liu KY, Fang H, Cui FJ, Nyabako BA, Tao TL, Zan XY, Chen HY, Sun WJ. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Applied Microbiology and Biotechnology, 2020, 104(14):6363-6373.
    [27] Wanapaisan P, Chumsakul O, Panbangred W. Enhanced Cry1Da production in Bacillus thuringiensis by driving expression from the σE-dependent BtI promoter. Journal of Applied Microbiology, 2013, 115(3):859-871.
    [28] Yang H, Wang PS, Peng Q, Rong R, Liu CX, Lereclus D, Zhang J, Song FP, Huang DF. Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells. Applied and Environmental Microbiology, 2012, 78(18):6466-6474.
    [29] Chen XM, Gao TT, Peng Q, Zhang J, Chai YR, Song FP. Novel cell wall hydrolase CwlC from Bacillus thuringiensis is essential for mother cell lysis. Applied and Environmental Microbiology, 2018, 84(7):e02640-17.
    [30] Serrano M, Côrte L, Opdyke J, Moran CP, Henriques AO. Expression of spoIIIJ in the prespore is sufficient for activation of Sigma G and for sporulation in Bacillus subtilis. Journal of Bacteriology, 2003, 185(13):3905-3917.
    [31] Li Ge, Zeng HC. Application of mutation in the breeding of antibiotic-producing microorganisms. Anhui Agricultural Science, 2007, 35(4):970-971.
    [32] Tan Mu, Zhao Genhai, Liu Hui, et al. Compound mutagenesis and fermentation optimization of Flavobacterium producing vitamin K2. Journal of Radiation Research and Radiation Technology, 2015, 33(4):40401-040401.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭金莉,朱梓榕,陈文慧,罗斯思,周朋吉,全梅芳,孙运军,夏立秋,丁学知. 苏云金芽胞杆菌等离子复合体诱变提高抗鳞翅目害虫的杀虫毒力[J]. 微生物学报, 2022, 62(4): 1390-1400

复制
分享
文章指标
  • 点击次数:243
  • 下载次数: 2441
  • HTML阅读次数: 779
  • 引用次数: 0
历史
  • 收稿日期:2021-07-15
  • 最后修改日期:2021-09-18
  • 在线发布日期: 2022-04-15
文章二维码