Leifsonia sp.ZF2019中一种新型耐木糖β-木糖苷酶的表达与特征
作者:
基金项目:

国家大学生创新创业训练计划(202010341004);浙江省自然科学基金(LY17C200019)


Expression and characterization of a novel xylose-tolerant β-xylosidase from Leifsonia sp.ZF2019
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】从栀子灰蝶幼虫分离的Leifsonia sp.ZF2019菌株中克隆表达出一种新型β-木糖苷酶Xyl4900,并研究其酶学性质,以期为开发适用于工业生产的β-木糖苷酶提供参考。【方法】采用生物信息学分析技术分析Leifsonia sp.ZF2019菌株的β-木糖苷酶Xyl4900基因并在大肠杆菌中表达了该基因,纯化并研究了其酶学性质。【结果】Xyl4900与GH3家族的β-葡萄糖苷酶同源性高,但带有β-木糖苷酶结构域,可特异性水解对硝基苯基β-D-吡喃木糖苷(pNPX),是一种新型β-木糖苷酶。酶学特性分析显示,Xyl4900在45℃和pH 7.0的条件下酶活性最高,且在pH 6.0-9.0的范围内孵育14 h,仍保持80%以上的酶活力。除Cu2+外,其他金属离子(2.5 mmol/L)对Xyl4900酶活力无明显影响,且对低浓度有机溶剂(5% V/V)有较强耐受性。此外,在20%(W/V) NaCl或100 mmol/L木糖溶液中Xyl4900的酶活性仍高于50%,表现出较好的盐和木糖耐受性。动力学参数分析显示,Xyl4900的Km值、Vmax值和木糖抑制常数Ki值分别为0.80 mmol/L、36.10 U/mg和150.12 mmol/L。特别地,Xyl4900能够很好地降解木二糖、木三糖。【结论】Xyl4900具有良好的pH稳定性、木糖及盐耐受性,能够较好地应用到半纤维素降解和其他工业生产中。

    Abstract:

    [Objective] We cloned and expressed a novel β-xylosidase Xyl4900 from Leifsonia sp.ZF2019 isolated from Artipe eryx larvae and then investigated its enzymatic properties,aiming to provide foundations for developing β-xylosidase suitable for industrial application.[Methods] We used bioinformatics tools to analyze the gene of Xyl4900,expressed it in Escherichia coli,and investigated the enzymatic properties of the expressed protein.[Results] Xyl4900 had high homology with the β-glucosidase of GH3 family while had a domain of β-xylosidase.It was a novel β-xylosidase that could specifically hydrolyze 4-nitrophenyl β-D-xylopyranoside.Xyl4900 had the highest activity at 45℃ and pH 7.0,and it still maintained more than 80% of activity after being incubated at pH 6.0-9.0 for 14 h.This enzyme was barely affected by other metal ions (2.5 mmol/L) except Cu2+ and had strong tolerance to low-concentration organic solvents (5%,V/V).In addition,the Xyl4900 in 20%(W/V) NaCl or 100 mmol/L xylose solution showed the activity higher than 50%,demonstrating good salt or xylose tolerance.The Km,Vmax,and xylose inhibition constant Ki of Xyl4900 were 0.80 mmol/L,36.10 U/mg,and 150.12 mmol/L,respectively.In particular,we found that Xyl4900 could well degrade xylobiose and xylotriose.[Conclusion] Xyl4900 showed good pH stability and tolerance to xylose and salt,and thus could be used in hemicellulose degradation and other industrial production practices.

    参考文献
    [1] Saha BC. Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresource Technology, 2003, 90(1):33-38.
    [2] Khandeparker R, Jalal T. Xylanolytic enzyme systems in Arthrobacter sp. MTCC 5214 and Lactobacillus sp. Biotechnology and Applied Biochemistry, 2015, 62(2):245-254.
    [3] Benassi VM, De Lucas RC, Jorge JA, Polizeli MD. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production. Brazilian Journal of Microbiology, 2014, 45(4):1459-1467.
    [4] Patel H, Kumar AK, Shah A. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11. International Journal of Biological Macromolecules, 2018, 109:1260-1269.
    [5] Jordan DB, Wagschal K. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Applied Microbiology and Biotechnology, 2010, 86(6):1647-1658.
    [6] Tsujibo H, Miyamoto K, Kuda T, Minami K, Sakamoto T, Hasegawa T, Inamori Y. Purification, properties, and partial amino acid sequences of thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Applied and Environmental Microbiology, 1992, 58(1):371-375.
    [7] Lorenz WW, Wiegel J. Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485:a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. Journal of Bacteriology, 1997, 179(17):5436-5441.
    [8] Lasrado LD, Gudipati M. Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydrate Polymers, 2013, 92(2):1978-1983.
    [9] Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, Danson MJ. A novel β-xylosidase structure from Geobacillus thermoglucosidasius:the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallographica Section D:Biological Crystallography, 2014, 70(5):1366-1374.
    [10] Cintra LC, Fernandes AG, De Oliveira ICM, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, De Faria FP. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. International Journal of Biological Macromolecules, 2017, 105:262-271.
    [11] Li Q, Jiang YJ, Tong XY, Pei JJ, Xiao W, Wang ZZ, Zhao LG. Cloning and characterization of the β-xylosidase from Dictyoglomus turgidum for high efficient biotransformation of 10-deacetyl-7-xylosltaxol. Bioorganic Chemistry, 2020, 94:103357.
    [12] Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. Journal of Environmental Radioactivity, 2020, 217:106202.
    [13] Nielsen H, Tsirigos KD, Brunak S, Heijne G. A brief history of protein sorting prediction. The Protein Journal, 2019, 38(3):200-216.
    [14] Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK. Protein database searches using compositionally adjusted substitution matrices. The FEBS Journal, 2005, 272(20):5101-5109.
    [15] Kumar V, Satyanarayana T. Biochemical and thermodynamic characteristics of thermo-alkali-stable xylanase from a novel polyextremophilic Bacillus halodurans TSEV1. Extremophiles, 2013, 17(5):797-808.
    [16] Xu B, Dai LM, Zhang WH, Yang YJ, Wu Q, Li JJ, Tang XH, Zhou JP, Ding JM, Han NY, Huang ZX. Characterization of a novel salt-, xylose-and alkali-tolerant GH43 bifunctional β-xylosidase/α-L-arabinofuranosidase from the gut bacterial genome. Journal of Bioscience and Bioengineering, 2019, 128(4):429-437.
    [17] Xu B, Dai LM, Li JJ, Deng M, Miao HB, Zhou JP, Mu YL, Wu Q, Tang XH, Yang YJ, Ding JM, Han NY, Huang ZX. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. Journal of Microbiology and Biotechnology, 2016, 26(1):9-19.
    [18] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259):680-685.
    [19] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2):248-254.
    [20] Shi H, Li X, Gu HX, Zhang Y, Huang YJ, Wang LL, Wang F. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnology for Biofuels, 2013, 6(1):27.
    [21] Yin YR, Hu QW, Xian WD, Zhang F, Zhou EM, Ming H, Xiao M, Zhi XY, Li WJ. Characterization of a neutral recombinant xylanase from Thermoactinospora rubra YIM 77501T. Antonie Van Leeuwenhoek, 2017, 110(3):429-436.
    [22] Yin YR, Xian WD, Han MX, Zhou EM, Liu L, Alkhalifah DHM, Hozzein WN, Xiao M, Li WJ. Expression and characterisation of a pH and salt tolerant, thermostable and xylose tolerant recombinant GH43β-xylosidase from Thermobifida halotolerans YIM 90462T for promoting hemicellulose degradation. Antonie Van Leeuwenhoek, 2019, 112(3):339-350.
    [23] Nieto-Domínguez M, de Eugenio LI, Barriuso J, Prieto A, Fernández De Toro B, Canales-MayordomoÁ, Martínez MJ. Novel pH-stable glycoside hydrolase family 3β-xylosidase from Talaromyces amestolkiae:an enzyme displaying regioselective transxylosylation. Applied and Environmental Microbiology, 2015, 81(18):6380-6392.
    [24] Tong XY, Qi ZP, Zheng DY, Pei JJ, Li Q, Zhao LG. High-level expression of a novel multifunctional GH3 family β-xylosidase/α-arabinosidase/β-glucosidase from Dictyoglomus turgidum in Escherichia coli. Bioorganic Chemistry, 2021, 111:104906.
    [25] Rohman A, Dijkstra BW, Puspaningsih NNT. β-xylosidases:structural diversity, catalytic mechanism, and inhibition by monosaccharides. International Journal of Molecular Sciences, 2019, 20(22):5524.
    [26] Zhou JG, Bao L, Chang L, Zhou YF, Lu H. Biochemical and kinetic characterization of GH43β-D-xylosidase/α-L-arabinofuranosidase and GH30α-L-arabinofuranosidase/β-D-xylosidase from rumen metagenome. Journal of Industrial Microbiology& Biotechnology, 2012, 39(1):143-152.
    [27] Viborg AH, Sørensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, Svensson B. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43β-D-xylosidase/α-L-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12. AMB Express, 2013, 3(1):1-8.
    [28] Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Characterization of two β-xylosidases from Bifidobacterium adolescentis and their contribution to the hydrolysis of prebiotic xylooligosaccharides. Applied Microbiology and Biotechnology, 2011, 92(6):1179-1185.
    [29] Campos E, Negro Alvarez MJ, Sabarís Di Lorenzo G, Gonzalez S, Rorig M, Talia PL, Grasso DH, Sáez F, Manzanares Secades P, Ballesteros Perdices M, Cataldi AA. Purification and characterization of a GH43β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria. Microbiological Research, 2014, 169(2/3):213-220.
    [30] Marcolongo L, La Cara F, del Monaco G, Paixão SM, Alves L, Marques IP, Ionata E. A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification. International Journal of Biological Macromolecules, 2019, 122:1224-1234.
    [31] Pinphanichakarn P, Tangsakul T, Thongnumwon T, Talawanich Y, Thamchaipenet A. Purification and characterization of β-xylosidase from Streptomyces sp. CH7 and its gene sequence analysis. World Journal of Microbiology and Biotechnology, 2004, 20(7):727-733.
    [32] Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DWS. Purification and characterization of a glycoside hydrolase family 43β-xylosidase from Geobacillus thermoleovorans IT-08. Applied Biochemistry and Biotechnology, 2009, 155(1/2/3):1-10.
    [33] Chen Z, Jia H, Yang Y, Yan Q, Jiang Z, Teng C. Secretory expression of a β-xylosidase gene from Thermomyces lanuginosus in Escherichia coli and characterization of its recombinant enzyme. Letters in Applied Microbiology, 2012, 55(5):330-337.
    [34] Vieille C, Zeikus GJ. Hyperthermophilic enzymes:sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 2001, 65(1):1-43.
    [35] Doukyu N, Ogino H. Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 2010, 48(3):270-282.
    [36] Sinha R, Khare SK. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Frontiers in Microbiology, 2014, 5:165.
    [37] De Carvalho DR, Carli S, Meleiro LP, Rosa JC, De Oliveira AHC, Jorge JA, Furriel RPM. A halotolerant bifunctional β-xylosidase/α-L-arabinofuranosidase from Colletotrichum graminicola:purification and biochemical characterization. International Journal of Biological Macromolecules, 2018, 114:741-750.
    [38] Pang PJ, Cao LC, Liu YH, Xie W, Wang Z. Structures of a glucose-tolerant β-glucosidase provide insights into its mechanism. Journal of Structural Biology, 2017, 198(3):154-162.
    [39] Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT. A xylose-tolerant beta-xylosidase from Paecilomyces thermophila:characterization and its co-action with the endogenous xylanase. Bioresource Technology, 2008, 99(13):5402-5410.
    相似文献
    引证文献
引用本文

何易,焦镕虎,王晨曦,王茜,许光治. Leifsonia sp. ZF2019中一种新型耐木糖β-木糖苷酶的表达与特征[J]. 微生物学报, 2022, 62(4): 1452-1463

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-25
  • 最后修改日期:2021-10-13
  • 在线发布日期: 2022-04-15
文章二维码