茅草菇菌丝球对铬黑T的脱色降解性能及毒性评价
作者:
基金项目:

国家自然科学基金(21606002);安徽省重点研究与开发计划(202004a06020021);安徽省高校自然科学研究重点项目(KJ2020A0049);绿色高分子材料安徽省重点实验室资助项目(2022KF009)


Decolorization and degradation of Eriochrome Black T by mycelial pellets of Lactarius deliciosus and toxicity evaluation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】利用真菌茅草菇菌丝球对染料铬黑T (EBT)进行脱色和降解,探究在不同环境条件下对染料脱色性能的影响及作用机制。【方法】采用单因素分析探究真菌的最佳脱色能力,分光光度法测定真菌酶活,小麦种子萌发、大肠杆菌接触抑制试验及秀丽隐杆线虫毒性试验测定脱色前后废水的毒性。【结果】茅草菇菌丝球受摇床温度和转速影响较小,在pH 5、28℃、120 r/min下,400 mg/L的EBT溶液脱色率为97.14%。研究表明,茅草菇菌丝球在脱色过程中主要分泌3种木质素酶,即木质素过氧化物酶、锰过氧化物酶和漆酶,其最大酶活分别为(134.15±9.93)、(64.1±2.98)和(12.43±0.34) U/L。推断了染料降解的潜在路径,证实EBT的去除是通过生物吸附与降解的协同作用实现的。最后对脱色后的染料废水进行了多级毒性评价,包括植物毒性、微生物毒性和动物毒性,结果表明,脱色后的染料废水毒性显著降低。【结论】该研究对探讨生物法处理工业染料废水具有重要参考价值。

    Abstract:

    [Objective] The mycelial pellets of Lactarius deliciosus were used to decolorize and degrade the dye Eriochrome Black T (EBT).We investigated the performance and mechanism of the decolorization by the mycelial pellets under different environmental conditions.[Methods] Single factor experiments were conducted to explore the optimal decolorization performance of the fungi.We measured the fungal enzyme activity by spectrophotometry,and performed wheat seed germination test,E. coli contact toxicity test,and Caenorhabditis elegans toxicity test to evaluate the toxicity of the EBT solutions before and after decolorization.[Results] The results manifested that the mycelial pellets of L. deliciosus were slightly affected by the shaker temperature and rotation speed.At pH 5,28℃,and 120 r/min,the decolorization rate for 400 mg/L EBT solution was 97.14%.In the decolorization process,the mycelial pellets of L. deliciosus secreted three ligninases,namely lignin peroxidase,manganese peroxidase,and laccase,which had the maximum activities of (134.15±9.93),(64.1±2.98),and (12.43±0.34) U/L,respectively.We deduced that the mycelial pellets of L. deliciosus removed EBT by the synergistic effects of biosorption and degradation.The multi-level toxicity evaluation demonstrated that the dye wastewater after decolorization had significantly reduced toxicity.[Conclusion] All these results have an important reference value in exploring the process of dye wastewater treatment with biological method.

    参考文献
    [1] Shoiful A, Kambara H, Cao LTT, Matsushita S, Kindaichi T, Aoi Y, Ozaki N, Ohashi A. Mn (II) oxidation and manganese-oxide reduction on the decolorization of an azo dye. International Biodeterioration& Biodegradation, 2020, 146:104820.
    [2] Tan L, He MY, Song L, Fu XM, Shi SN. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresource Technology, 2016, 203:287-294.
    [3] Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor:performance and microbial dynamics. Chemosphere, 2020, 238:124539.
    [4] Yeruva DK, Shanthi Sravan J, Butti SK, Annie Modestra J, Venkata Mohan S. Spatial variation of electrode position in bioelectrochemical treatment system:design consideration for azo dye remediation. Bioresource Technology, 2018, 256:374-383.
    [5] Shabbir S, Faheem M, Ali N, Kerr PG, Wu YH. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth. Bioresource Technology, 2017, 225:395-401.
    [6] Xiao X, Li TT, Lu XR, Feng XL, Han X, Li WW, Li Q, Yu HQ. A simple method for assaying anaerobic biodegradation of dyes. Bioresource Technology, 2018, 251:204-209.
    [7] Ali SS, Al-Tohamy R, Xie R, El-Sheekh MM, Sun J. Construction of a new lipase-and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresource Technology, 2020, 313:123631.
    [8] Wang N, Chu YL, Wu FA, Zhao ZL, Xu XY. Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberrybranches. International Biodeterioration& Biodegradation, 2017, 117:236-244.
    [9] Tan L, Shao YF, Mu GD, Ning SX, Shi SN. Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). Bioresource Technology, 2020, 295:122283.
    [10] 卢莱雅,秦嘉玲,杨圩.关于印染废水处理方法的综述.山东化工, 2020, 49(15):67-68. Lu LY, Qin JL, Yang W. A review on the method for textile wastewater. Shandong Chemical Industry, 2020, 49(15):67-68.(in Chinese)
    [11] 宋昭仪,胥维昌,马文静,胡金玲,杨洪新.偶氮染料废水处理技术及研究进展.染料与染色, 2018, 55(6):50-54. Song ZY, Xu WC, Ma WJ, Hu JL, Yang HX. Treatment technology and research progress of azo dye wastewater. Dyestuffs and Coloration, 2018, 55(6):50-54.(in Chinese)
    [12] Patil SM, Suryavanshi MV, Chandanshive VV, Kurade MB, Govindwar SP, Jeon BH. Regeneration of textile wastewater deteriorated microbial diversity of soil microcosm through bioaugmentation. Chemical Engineering Journal, 2020, 380:122533.
    [13] Du YW, Ma H, Huang LP, Pan Y, Huang J, Liu Y. Electrochemical characteristics of the decolorization of three dyes by laccase mediator system (LMS) with synthetic and natural mediators. Chemosphere, 2020, 239:124779.
    [14] Guo G, Hao JX, Tian F, Liu C, Ding KQ, Xu J, Zhou W, Guan ZB. Decolorization and detoxification of azo dye by halo-alkaliphilic bacterial consortium:systematic investigations of performance, pathway and metagenome. Ecotoxicology and Environmental Safety, 2020, 204:111073.
    [15] Chen GT, An XJ, Feng LL, Xia X, Zhang QH. Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp. Ecotoxicology and Environmental Safety, 2020, 203:111047.
    [16] 杨爽,宋迪慧,安路阳,张立涛,柳丽芬,屈泽鹏,徐歆未,李红欣.厌氧E-MBR反应器在焦化废水处理中的微生物特性研究.微生物学报, 2021, 61(8):2427-2441. Yang S, Song DH, An LY, Zhang LT, Liu LF, Qu ZP, Xu XW, Li HX. Study on rapid start-up of anaerobic E-MBR and microbial characteristics and membrane fouling. Acta Microbiologica Sinica, 2021, 61(8):2427-2441.(in Chinese)
    [17] 陈敏,魏桂芳,高平平,王凌华,庞晓燕,赵立平.用ERIC-PCR结合分子杂交监测焦化废水处理系统(A2/O)中微生物群落结构的变化.生态学报, 2004, 24(7):1330-1334. Chen M, Wei GF, Gao PP, Wang LH, Pang XY, Zhao LP. Using ERIC-PCR and molecular hybridization for monitoring changes in the structure of microbial community in coking wastewater treatment system. Acta Ecologica Sinica, 2004, 24(7):1330-1334.(in Chinese)
    [18] Munck C, Thierry E, Gräßle S, Chen SH, Ting ASY. Biofilm formation of filamentous fungi Coriolopsis sp. on simple muslin cloth to enhance removal of triphenylmethane dyes. Journal of Environmental Management, 2018, 214:261-266.
    [19] Iark D, Buzzo AJDR, De Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Peralta Muniz Moreira RDF, Bracht A, Peralta RM. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technology, 2019, 289:121655.
    [20] Bankole PO, Adekunle AA, Govindwar SP. Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha:co-biomass decolorization of cibacron brilliant red 3B-A dye. International Journal of Biological Macromolecules, 2018, 120:19-27.
    [21] 王琦.稀土元素对Pycnoporus sp. SYBC-L3产漆潶暄??栎椆湶斬猖敶?嗓溙椱癲斄爔獶椮瑟楗攧獦??楦???水????????????????????楹渠??栬椠湔敥獷敡??戠牓?嬠??嵷?婲桩愠潌????坧畮?公塹???栠敭湵杳?塲???匠甼?吾??坮慺湩杴?塳???婥桧慡湮杳?圯乩???畄?夲????档敡湳?夠???楤潵摣整杩牯慮搬愠瑣楨潡湲?慣湴摥?摩敺瑡潴硩楯普椬挠慡瑮楤漠湢?潯晲?瑭桥敤?瑡牴楩灯桮攠湯祦氠浳敹瑮桴慨湥整?摣礠敤?捥潳漮洠愼獩猾楅散?扴牯楸汩汣楯慬湯瑧?戠污畮敤?扅祮?瑩桲敯?敭硥瑮牴慡捬攠汓污畦汥慴特?支湩稾礬洠攲猰?昸爬漠洱‵洸示挵攰氭椵愸?漼晢??楛??慝挠瑌慯牰楥畺猭?摡敲汢楯捳楡漠獎甬猠??楯????楓??爠潃湲瑵楺攠牊獃?漠晏??桥敬浡楳挭慓汯?卯挠楎攬渠捏敳?慡渠摊??渠权楯湮敧敯爠楲湥杤??楥????ひ???????㈠???????????扬牥?学??嵴??畳氠歡慮牤渠楬??乣??坥愭瑢桡慳牥此愠牮?????剭慰湯敳?乴剥???敮漠湣??????潯癵楳渠摦睬慯牷?卢偩???敡捣潴汯潲牳椮稠愼瑩椾潎湡?慯湭摡?摥敲瑩潡硬楳昼椯捩愾琬椠漲渰′漰昬?搱礰攨?洩椺砱琲甲爷攮?慢湲搾?琲攴硝琠極氯攮?敐星曌泹當攮滓璙?戧祙?沄楍揣棊敶溧??榐??敟狥浆愧瑦潕揫慦牍為澇測?瘲攰氱永攮爼敢捲放畛洲??椠??楳湩…昣椳砲攴搻?扫敡搠?甬瀠晓汯潢睯…戣椳漲爴攻愠捁琬漠片…眣椲琴栳※獲畡扬獣敺煹畫攭湂瑩…漣砳椲搴愻瑫楯癷敳?獡琠牁攬猠獄…猣琳甲搲礻??楯???挲漴琻潳硫楩挠潊氮漠杁祮?慬湹摳??渠癯楦爠潤湥浣敯湬瑯慲汩?卡慴晩敯瑮礠??楴????ち????ㄠ??????????扣物?孭??嵯?卩桤慵扭戼椯物 ̄匠???慴桨敥攠浬?????汯楦?乩???敳牥牣?健???坥甠?奮???偯數物楣灯桬祯瑧潩湣?扬椠潳晴極汤浩獥?愮?渼潩瘾故汮?慩湲摯?湭慥瑮畴牡慬氠?扣楩潥汮潣来椠捡慮汤?獐祯獬瑬敵浴?景潮爠?瑥桳敥?敲晣晨攼振瑩椾瘬攠′爰攱洹漬瘠愲氶?漲昵?猺甲氶瀳栱漳渭愲琶攳搲″愮稼潢?搾祛攲?浝攠瑃桨祥汮?潈牂愬渠杇敵?戠祓?猠祌湩攠版本椠獚瑨楯捵?浄攬挠桃慡湯椠獘洬???楮??桃攬洠潌獩灵栠教牄攬??楩???㈠き????????水???㈠????才牵?孴??嵧??潥獲瑡慴晩慯???????汥獣桴楳欠桡??匠???汩??獩歯慮牳??????慲摥楳扳愠牲慥瑳慰?呮??夠畢湹椠慨牥瑸潡????卯祣慹晣楬畯摤摯楤湥?????攨捈潂汃潄爩椠穥慸瑰楯潳湵?慥渠摩?戠楴潨瑥爠慮湥獭晡潴牯浤慥琠椼潩渾?灡慥瑮桯睲慨祡?潤晩?瑩敳砠瑥楬汥敧?摮祳攼?扩社??楩??祊汯極湲摮牡潬挠敯灦栠慅汮當浩?慯畮牭敥汮楴畡浬??楡????業??楴漼瀯物漾挬攠猲猰?愹測搠′?椵漺猲礱猶琭攲洲猲??湲朾楛渲攷敝爠楋湩杭??楍????の?????㈠????ㄠ??????????戠版?嬬??嵷??攠?塗???卥潴湡杢?????楣?夠奡??圠慰湨来?乯??塰略?????慳湳?塥??圠敲楥??卡???晥晬楬捵楬敡湲琠?摯數杩牣慩摴慹琠楯潦渠?潲晩?慬穯潳?摮礠敩獮?戼祩 ̄慃?湥敮睯汲票?楢獤潩汴慩瑳攠摥?晥畧湡杮畳猼??椾?吼物椾挠桃潨摥敭牯浳慰?瑥潲浥攼港瑩漾猬甠洲??椹??甲渳搶攺爱′渴漳渰?献琼敢牲椾汛攲?捝漠湈撅椬璯槭漜測猱??椬???挮潅瓻漟砟楽揳潚泖濹柬科?憄游摄—?渖盥榰犋潐溙洬攠渲琰愱氷?匠愴昵攨琶礩??椹???代?????????水????????戬爠?孨??嵑??攠杈敵爠獑歋???????????桡浤敳汯潲癰??????????佡湴摯牭敩橴潥瘭楬???????????敯捳潡汮漠畯牮椠穅慲瑩楯潣湨?慯湭摥?摂敬瑡潣硫椠晔椮挠愼瑩椾潎湥?漠晃?浥潭湩潣慡穬漠?摡祴敥獲?扡祬?氼愯捩挾愬猠攲‰昱爷漬洠?琵栨收?眺栱椹琵攭?爹漷琮?晩畮渠权畨獩??楳?吩爼慢浲放瑛攲猹?瘠旡狑玅椮捋濷氯漏狌??楶????椴??漖町爆渔慶氮?濞曑??楦潕瓫敦捍梺溇漬氠漲朰礱??椼?? ̄??????????????ぎ?gi S, Sharma P, Prasher IB, Chaudhary S, Dhau JS, Umar A. Wastewater cleanup using Phlebia acerina fungi:an insight into mycoremediation. Journal of Environmental Management, 2018, 228:130-139.
    [31] 陆涛,张其磊,姚善泾.丝状真菌在废水处理过程中的生物脱除作用.高校化学工程学报, 2016, 30(4):741-753. Lu T, Zhang QL, Yao SJ. Biosorption applications of filamentous fungi in wastewater treatment. Journal of Chemical Engineering
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵锦,王晓慧,王栋,吴志,吴庆喜,陈彦. 茅草菇菌丝球对铬黑T的脱色降解性能及毒性评价[J]. 微生物学报, 2022, 62(4): 1513-1523

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 843
  • HTML阅读次数: 532
  • 引用次数: 0
历史
  • 收稿日期:2021-08-27
  • 最后修改日期:2021-10-21
  • 在线发布日期: 2022-04-15
文章二维码