镉污染水稻种子内生细菌的分离及其耐镉性和植物促生性研究
作者:
基金项目:

湖南省农业科技创新资金项目(2018QN03);长沙市科技计划(kq1801033)


Isolation of endophytic bacteria from cadmium-contaminated rice seeds and their cadmium tolerance and plant growth-promoting traits
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】植物内生细菌在促进植物生长和重金属污染土壤修复中发挥着重要作用。本研究对镉污染水稻种子内生细菌进行分离和功能鉴定,从而确定其镉耐受性、植物促生性以及对镉胁迫下水稻种子萌发和幼苗生长的影响。【方法】采用乙醇-次氯酸钠联合灭菌法对水稻种子进行表面灭菌,采用标准平板培养法对内生细菌进行分离、纯化;对菌株16S rRNA基因进行扩增和测序,鉴定菌株的分类学地位;运用微量稀释法、电感耦合等离子体质谱法、比色法测定内生细菌的镉耐受性、镉去除率和植物促生性;采用浸种法进行菌剂侵染,观察施加菌剂对水稻种子萌发、幼苗生长和镉积累的影响。【结果】从两个水稻品种的种子中共分离得到133株内生细菌,分属于12个属的24个种。在低镉品种728B中分离得到83个菌株,主要包括假单胞菌属(34.94%)、芽孢杆菌属(28.92%)和类芽孢杆菌属(10.84%)菌株。在高镉品种博B中分离得到50个菌株,主要包括泛菌属(40%)、短小杆菌属(22%)和微杆菌属(12%)菌株。对24个代表性菌株的镉耐受性进行测定,发现镉离子对菌株的最小抑制浓度介于80-2 560 μmol/L,其中芽孢杆菌HNR-4具有最高的镉耐受性。在含有5 mmol/L CdCl2液体培养基中培养24 h,HNR-4对镉的去除率达到77.57%。对24个菌株的植物促生性测定发现,IAA合成量为0.78-40.12 μg/mL;铁载体产生量为1.46-752.74 mg/L;溶磷量为0-3.10 mg/L;ACC脱氨酶比活力为0-9.22 U/mg。施加芽孢杆菌HNR-4菌剂显著提高了镉胁迫下水稻种子萌发率和幼苗茎叶长,减小了镉离子由根部向地上部分的转移系数。【结论】尽管不同镉污染水稻品种的种子内生细菌组成存在一定差异,但这些内生细菌均有不同程度的耐镉性和植物促生性。对耐镉内生细菌的分离和鉴定,有助于进一步探讨重金属污染下内生细菌与植物互作机制以及微生物应用于农田重金属污染修复的潜力。

    Abstract:

    [Objective] Endophytes play an important role in the promotion of plant growth and the remediation of heavy metal-contaminated soil.In this study,we isolated the endophytic bacteria from cadmium-contaminated rice seeds and analyzed their cadmium tolerance,plant growth-promoting traits,and effects on rice seed germination and seedling growth under cadmium stress.[Methods] First,we used ethanol and sodium hypochlorite to sterilize the surface of rice seeds and then isolated the endophytic bacteria by standard dilution plating method.Second,we amplified and sequenced the 16S rRNA genes of the strains and identified their taxonomic positions.Third,we analyzed the cadmium tolerance,cadmium removal rate,and plant growth-promoting traits of the endophytic bacteria via microdilution method,inductively coupled plasma mass spectrometry (ICP-MS),and spectrophotometry,respectively.Finally,we infected the rice seeds with bacterial inoculants to observe their effects on seed germination,seedling growth,and cadmium accumulation.[Results] We isolated a total of 133 endophyte strains belonging to 24 species of 12 genera from two rice cultivars.Eighty-three strains were isolated from low-Cd-accumulating caltivar 728B,including Pseudomonas(34.94%),Bacillus(28.92%),and Paenibacillus(10.84%).Fifty strains were isolated from high-Cd-accumulating caltivar BB,including Pantoea(40%),Curtobacterium(22%),and Microbacterium(12%).The minimum inhibitory concentrations of cadmium against 24 representative strains were 80-2 560 μmol/L.Bacillus sp.HNR-4 showed the highest cadmium tolerance.The cadmium removal rate of HNR-4 reached 77.57% after the strain was cultured in the liquid medium containing 5 mmol/L Cd2+ for 24 h.Most of the 24 strains were capable of producing plant growth-promoting substances,such as IAA (0.78-40.12 μg/mL),siderophore (1.46-752.74 mg/L),soluble phosphate (0-3.10 mg/L),and ACC deaminase (0-9.22 U/mg).Under cadmium stress,HNR-4 inoculant significantly increased the germination rate and seedling shoot length,while reduced the transfer coefficient of cadmium from root to shoot.[Conclusion] Although the composition of seed endophytic bacteria varied in different rice cultivars,these bacteria all showed different levels of cadmium tolerance and plant growth-promoting activities.Isolation and identification of Cd-resistant endophytic bacteria may help investigate the interaction between endophytic bacteria and host plants exposed to heavy metal contamination,and explore the potential of microbial remediation in farmland.

    参考文献
    [1] Shade A, Jacques MA, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 2017, 37:15-22.
    [2] Nelson EB. The seed microbiome:origins, interactions, and impacts. Plant and Soil, 2018, 422(1/2):7-34.
    [3] Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria:mechanisms, diversity, host range and genetic determinants. Microbiological Research, 2019, 221:36-49.
    [4] Zhou JY, Li P, Meng DL, Gu YB, Zheng ZY, Yin HQ, Zhou QM, Li J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environmental Pollution, 2020, 260:113990.
    [5] Walitang DI, Kim CG, Kim K, Kang Y, Kim YK, Sa TM. The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biology, 2018, 18(1):51.
    [6] Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa TM. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiology, 2017, 17(1):1-13.
    [7] 李南南,黎妮,赵燃,袁隆平,肖明,刘洋,王伟平.优异杂交水稻亲本灌浆期种子内生细菌多样性研究.微生物学杂志, 2017, 37(2):20-25. Li NN, Li N, Zhao R, Yuan LP, Xiao M, Liu Y, Wang WP. Diversity of endophytic bacterial communities in parental seeds of outstanding hybrid rice (Oryza sativa L.) in the milk. Journal of Microbiology, 2017, 37(2):20-25.(in Chinese)
    [8] 姜晓宇,高菊生,徐凤花,曹艳花,唐雪,张晓霞.水稻种子内生细菌多样性及其分泌植物生长素能力的测定.微生物学报, 2013, 53(3):269-275. Jiang XY, Gao JS, Xu FH, Cao YH, Tang X, Zhang XX. Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid. Acta Microbiologica Sinica, 2013, 53(3):269-275.(in Chinese)
    [9] 刘琳,刘洋,宋未.杂交水稻种子固有细菌群落多样性探究.生物技术通报, 2009, 1:95-99, 111. Liu L, Liu Y, Song W. Indigenous bacterial community diversity in hybrid rice (Oryza sativa L.) seed. Biotechnology Bulletin, 2009, 1:95-99, 111.(in Chinese)
    [10] 陈柯璇,汤雯婷,李丽娜,李绍仕,和丽萍,李海燕.种子内生菌增强宿主植物重金属抗性的功能机制研究进展.微生物学通报, 2021, 48(6):2187-2194. Chen KX, Tang WT, Li LN, Li SS, He LP, Li HY. Functional mechanism of seed endophytes enhancing heavy metal resistance of host plants:a review. Microbiology China, 2021, 48(6):2187-2194.(in Chinese)
    [11] Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues:mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 147:175-191.
    [12] 张凯璇,唐艳葵,秦芷怡,黄以,吴栋颢,纳泽林, Thongsalak Saktikoun,刘宇阳.植物内生菌应用于有害金属污染环境修复研究进展.江苏农业科学, 2018, 46(6):17-22. Zhang KX, Tang YK, Qin ZY, Huang Y, Wu DH, Na ZL, Saktikoun T, Liu YY. Research progress on application of plant endophytes in remediation of environmental pollution caused by harmful metals. Jiangsu Agricultural Sciences, 2018, 46(6):17-22.(in Chinese)
    [13] Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012, 30(6):1562-1574.
    [14] Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 2013, 60:182-194.
    [15] Luo JP, Tao Q, Jupa R, Liu YK, Wu KR, Song YC, Li JX, Huang Y, Zou LY, Liang YC, Li TQ. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii. Environmental Science& Technology, 2019, 53(12):6954-6963.
    [16] Wang L, Lin H, Dong YB, Li B, He YH. Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. Chemosphere, 2020, 240:124891.
    [17] Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174:14-25.
    [18] 邓平香,张馨,龙新宪.产酸内生菌荧光假单胞菌R1对东南景天生长和吸收、积累土壤中重金属锌镉的影响.环境工程学报, 2016, 10(9):5245-5254. Deng PX, Zhang X, Long XX. Effects of acid producing endophytic bacteria Pseudomonas fluorescens R1 on the growth responses, Zn and Cd accumulation in Sedum alfredii. Chinese Journal of Environmental Engineering, 2016, 10(9):5245-5254.(in Chinese)
    [19] Hu Y, Cheng HF, Tao S. The challenges and solutions for cadmium-contaminated rice in China:a critical review. Environment International, 2016, 92/93:515-532.
    [20] Chen HP, Tang Z, Wang P, Zhao FJ. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018, 238:482-490.
    [21] Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 2008, 3(2):163-175.
    [22] Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 1995, 61(2):793-796.
    [23] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1):47-56.
    [24] 孙亚凯.功能性微生物菌株的筛选及组合菌群活性研究.天津大学学位论文, 2006.
    [25] Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118(1):10-15.
    [26] Zhou WZ, Zhang HO, Ma YH, Zhou JP, Zhang YZ. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles, 2013, 17(5):723-731.
    [27] Montalbán B, Croes S, Weyens N, Lobo MC, Pérez-Sanz A, Vangronsveld J. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. International Journal of Phytoremediation, 2016, 18(10):985-993.
    [28] Sun WH, Xiong Z, Chu L, Li W, Soares MA, White JF Jr, Li HY. Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp.(strain BXGe71). Journal of Hazardous Materials, 2019, 370:225-231.
    [29] Syranidou E, Thijs S, Avramidou M, Weyens N, Venieri D, Pintelon I, Vangronsveld J, Kalogerakis N. Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation with indigenous strains. Frontiers in Plant Science, 2018, 9:1526.
    [30] Zadel U, Nesme J, Michalke B, Vestergaard G, Płaza GA, Schröder P, Radl V, Schloter M. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Science of the Total Environment, 2020, 711:134433.
    [31] Luo JP, Tao Q, Wu KR, Li JX, Qian J, Liang YC, Yang XE, Li TQ. Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology, 2017, 101(21):7961-7976.
    [32] Lin XY, Mou RX, Cao ZY, Xu P, Wu XL, Zhu ZW, Chen MX. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Science of the Total Environment, 2016, 569/570:97-104.
    [33] Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environmental Science and Pollution Research, 2016, 23(2):962-973.
    [34] Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environmental Science and Pollution Research, 2018, 25(26):25690-25701.
    [35] Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa Wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicology and Environmental Safety, 2017, 138:56-63.
    [36] Ghosh A, Pramanik K, Bhattacharya S, Mondal S, Ghosh SK, Ghosh PK, Maiti TK. Abatement of arsenic-induced phytotoxic effects in rice seedlings by an arsenic-resistant Pantoea dispersa strain. Environmental Science and Pollution Research, 2021, 28(17):21633-21649.
    [37] Walitang DI, Kim CG, Jeon S, Kang Y, Sa TM. Conservation and transmission of seed bacterial endophytes across generations following crossbreeding and repeated inbreeding of rice at different geographic locations. Microbiology Open, 2019, 8(3):e00662.
    [38] 范美玉,黎妮,贾雨田,张超,王伟平,杨志伟.耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究.农业环境科学学报, 2021, 40(2):279-286. Fan MY, Li N, Jia YT, Zhang C, Wang WP, Yang ZW. Study on the mitigation of cadmium stress in rice by cadmium-resistant Bacillus aryabhattai. Journal of Agro-Environment Science, 2021, 40(2):279-286.(in Chinese)
    [39] 余劲聪,何舒雅,曾润颖,林克明.芽孢杆菌修复土壤重金属镉污染的研究进展.广东农业科学, 2016, 43(1):73-78. Yu JC, He SY, Zeng RY, Lin KM. Research progress in remediation of cadmium contaminated soil with Bacillus. Guangdong Agricultural Sciences, 2016, 43(1):73-78.(in Chinese)
    [40] Rajkumar M, Ae N, Prasad MNV, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3):142-149.
    [41] Sinha S, Mukherjee SK. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology, 2008, 56(1):55-60.
    [42] Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J. The new insights into cadmium sensing. Frontiers in Plant Science, 2014, 5:245.
    [43] Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 2014, 169(1):30-39.
    [44] Punjee P, Siripornadulsil W, Siripornadulsil S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3. Canadian Journal of Microbiology, 2018, 64(2):131-145.
    [45] Siripornadulsil S, Siripornadulsil W. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice:potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 2013, 94:94-103.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付少委,楚超群,黎妮,宋崇洋,梁爽,张超,王伟平,杨志伟. 镉污染水稻种子内生细菌的分离及其耐镉性和植物促生性研究[J]. 微生物学报, 2022, 62(4): 1536-1548

复制
分享
文章指标
  • 点击次数:518
  • 下载次数: 1181
  • HTML阅读次数: 1024
  • 引用次数: 0
历史
  • 收稿日期:2021-09-10
  • 最后修改日期:2021-10-19
  • 在线发布日期: 2022-04-15
文章二维码