结核分枝杆菌吡嗪酰胺耐药性检测方法的研究进展
作者:
基金项目:

国家自然科学基金(81902170);国家级大学生创新创业训练项目(202110438019);潍坊医学院公派国内访学项目


Testing of the susceptibility of Mycobacterium tuberculosis to pyrazinamide
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    吡嗪酰胺(pyrazinamide,PZA)是重要的一线抗结核药物,与异烟肼、利福平和乙胺丁醇构成治疗方案的核心。因其疗效较好,被广泛应用于结核病的治疗过程。然而,近年来随着耐多药结核病的出现,PZA耐药导致部分患者治疗失败,因此常规开展PZA药物敏感性试验对于减少耐药性的发生显得极为重要。由于PZA在酸性条件下才能发挥作用,而结核分枝杆菌在酸性环境下生长不良,故PZA耐药性检测一直是临床中的难题。本文结合国内外最新研究进展,就结核分枝杆菌PZA耐药性检测方法的研究进行阐述,期望能为更有效地诊治结核病提供新思路。

    Abstract:

    Pyrazinamide (PZA) is an indispensable first-line drug for the treatment of tuberculosis. It plays a key role in shortening the course of the treatment from 9–12 months to 6 months. The antibiotics rifampicin (R), isoniazid (H), ethambutol (E), and PZA (Z) form the core control regimen for the drug-sensitive Mycobacterium tuberculosis. However, PZA resistance has led to treatment failure in many patients with the emergence of MDR-TB in recent years. Therefore, it is particularly important for reducing PZA resistance to carry out the susceptibility test. Nevertheless, the test is challenging and often unreliable, as the drug is active only at pH 5.5 which affects the in vitro growth of M. tuberculosis, and thus causes both false-susceptible and false-resistant results. In this review, we summarized the research on susceptibility testing of PZA, hoping to provide a reference for the effective diagnosis and treatment of tuberculosis.

    参考文献
    [1] Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, Kapata N, Mfinanga S, Hasnain SE, Katoto PDMC, Bulabula ANH, Sam-Agudu NA, Nachega JB, Tiberi S, McHugh TD, Abubakar I, Zumla A. Global tuberculosis report 2020-reflections on the global TB burden, treatment and prevention efforts. International Journal of Infectious Diseases, 2021, 113:S7-S12.
    [2] Njire M, Tan YJ, Mugweru J, Wang CW, Guo JT, Yew W, Tan SY, Zhang TY. Pyrazinamide resistance in Mycobacterium tuberculosis:review and update. Advances in Medical Sciences, 2016, 61(1):63-71.
    [3] Zhang Y, Permar S, Sun ZH. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. Journal of Medical Microbiology, 2002, 51(1):42-49.
    [4] Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, Pfyffer GE, Ridderhof JC, Siddiqi SH, Wallace RJ, Warren NG, Witebsky FG. Susceptibility testing of Mycobacteria, Nocardiae, and other Aerobic Actinomycetes. CLSI Standards:Guidelines for Health Care Excellence. 2011, Wayne (PA):Clinical and Laboratory Standards Institute.
    [5] Zhang Y, Mitchison D. The curious characteristics of pyrazinamide:a review. The International Journal of Tuberculosis and Lung Disease, 2003, 7(1):6-21
    [6] Sinirtas M, Ozakin C, Gedikoglu S. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to front line antituberculosis drugs and comparison with the radiometric BACTEC 460 TB method. Mikrobiyoloji Bulteni, 2009, 43(3):403-409.
    [7] Scarparo C, Ricordi P, Ruggiero G, Piccoli P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. Journal of Clinical Microbiology, 2004, 42(3):1109-1114.
    [8] Siddiqi S, Ahmed A, Asif S, Behera D, Javaid M, Jani J, Jyoti A, Mahatre R, Mahto D, Richter E, Rodrigues C, Visalakshi P, Rüsch-Gerdes S. Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of multidrug resistance using the Bactec MGIT 960 system:a multicenter study. Journal of Clinical Microbiology, 2012, 50(2):435-440.
    [9] Maslov DA, Zaĭchikova MV, Chernousova LN, Shur KV, Bekker OB, Smirnova TG, Larionova EE, Andreevskaya SN, Zhang Y, Danilenko VN. Resistance to pyrazinamide in Russian Mycobacterium tuberculosis isolates:pncA sequencing versus Bactec MGIT 960. Tuberculosis, 2015, 95(5):608-612.
    [10] Chedore P, Bertucci L, Wolfe J, Sharma M, Jamieson F. Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. Journal of Clinical Microbiology, 2010, 48(1):300-301.
    [11] Bouzouita I, Cabibbe AM, Trovato A, Draoui H, Ghariani A, Midouni B, Essalah L, Mehiri E, Cirillo DM, Slim-Saidi L. Is sequencing better than phenotypic tests for the detection of pyrazinamide resistance?The International Journal of Tuberculosis and Lung Disease:the Official Journal of the International Union Against Tuberculosis and Lung Disease, 2018, 22(6):661-666.
    [12] Mok S, Roycroft E, Flanagan PR, Montgomery L, Borroni E, Rogers TR, Fitzgibbon MM. Overcoming the challenges of pyrazinamide susceptibility testing in clinical Mycobacterium tuberculosis isolates. Antimicrobial Agents and Chemotherapy, 2021, 65(8):e0261720.
    [13] Mustazzolu A, Piersimoni C, Iacobino A, Giannoni F, Chirullo B, Fattorini L. Revisiting problems and solutions to decrease Mycobacterium tuberculosis pyrazinamide false resistance when using the Bactec MGIT 960 system. Annali Dell'Istituto Superiore Di Sanita, 2019, 55(1):51-54.
    [14] Demers AM, Venter A, Friedrich SO, Rojas-Ponce G, Mapamba D, Jugheli L, Sasamalo M, Almeida D, Dorasamy A, Jentsch U, Gibson M, Everitt D, Eisenach KD, Diacon AH. Direct susceptibility testing of Mycobacterium tuberculosis for pyrazinamide by use of the Bactec MGIT 960 system. Journal of Clinical Microbiology, 2016, 54(5):1276-1281.
    [15] 陈军,王飞,任易,肖勇,彭孝红. BacT/Alert 3D系统与罗氏培养基分离分枝杆菌的比较.中国防痨杂志, 2007, 29(2):151-153.
    Chen J, Wang F, Ren Y, Xiao Y, Peng XH. BacT/Alert 3D system versus Lowenstein-Jensen medium for isolation of Mycobacteria from clinical specimens. The Journal of the Chinese Antituberculosis Association, 2007, 29(2):151-153.(in Chinese)
    [16] Singh P, Wesley C, Jadaun GPS, Malonia SK, Das R, Upadhyay P, Faujdar J, Sharma P, Gupta P, Mishra AK, Singh K, Chauhan DS, Sharma VD, Gupta UD, Venkatesan K, Katoch VM. Comparative evaluation of Löwenstein-Jensen proportion method, BacT/ALERT 3D system, and enzymatic pyrazinamidase assay for pyrazinamide susceptibility testing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2007, 45(1):76-80.
    [17] Li H, Zhou LP, Luo J, Yu JP, Yang H, Wei HP. Rapid colorimetric pyrazinamide susceptibility testing of Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease:the Official Journal of the International Union Against Tuberculosis and Lung Disease, 2016, 20(4):462-467.
    [18] Martin A, Takiff H, Vandamme P, Swings J, Palomino JC, Portaels F. A new rapid and simple colorimetric method to detect pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide. Journal of Antimicrobial Chemotherapy, 2006, 58(2):327-331.
    [19] Murray MF. Nicotinamide:an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clinical Infectious Diseases, 2003, 36(4):453-460.
    [20] Akbal AU, Durupinar B, Coban AY. Colorimetric methods for rapid determination of pyrazinamide resistance. International Journal of Mycobacteriology, 2020, 9(3):274-280.
    [21] Hu Y, Wu X, Luo J, Fu Y, Zhao L, Ma Y, Li Y, Liang Q, Shang Y, Huang H. Detection of pyrazinamide resistance of Mycobacterium tuberculosis using nicotinamide as a surrogate. Clinical Microbiology and Infection, 2017, 23(11):835-838.
    [22] Mekonnen B, Mihret A, Getahun M, Hailu T, Sidiki S, V Kelley H, Scordo JM, Hunt WG, Pan XL, Balada-Llasat JM, Gebreyes W, Evans CA, Aseffa A, Torrelles JB, Wang SH, Abebe T. Evaluation of the tuberculosis culture color plate test for rapid detection of drug susceptible and drug-resistant Mycobacterium tuberculosis in a resource-limited setting, Addis Ababa, Ethiopia. PLoS One, 2019, 14(5):e0215679.
    [23] Toit K, Mitchell S, Balabanova Y, Evans CA, Kummik T, Nikolayevskyy V, Drobniewski F. The Colour Test for drug susceptibility testing of Mycobacterium tuberculosis strains. The International Journal of Tuberculosis and Lung Disease:the Official Journal of the International Union Against Tuberculosis and Lung Disease, 2012, 16(8):1113-1118.
    [24] Zhang AN, Jumbe E, Krysiak R, Sidiki S, Kelley HV, Chemey EK, Kamba C, Mwapasa V, García JI, Norris A, Pan XJ, Evans C, Wang SH, Kwiek JJ, Torrelles JB. Low-cost diagnostic test for susceptible and drug-resistant tuberculosis in rural Malawi. African Journal of Laboratory Medicine, 2018, 7(1):690.
    [25] Sharma B, Pal N, Malhotra B, Vyas L, Rishi SM. Comparison of MGIT 960& pyrazinamidase activity assay for pyrazinamide susceptibility testing of Mycobacterium tuberculosis. The Indian Journal of Medical Research, 2010, 132:72-76.
    [26] Wayne LG. Simple pyrazinamidase and urease tests for routine identification of Mycobacteria. The American Review of Respiratory Disease, 1974, 109(1):147-51.
    [27] Jonmalung J, Prammananan T, Leechawengwongs M, Chaiprasert A. Surveillance of pyrazinamide susceptibility among multidrug-resistant Mycobacterium tuberculosis isolates from siriraj hospital, Thailand. BMC Microbiology, 2010, 10:223.
    [28] Calderón RI, Velásquez GE, Becerra MC, Zhang Z, Contreras CC, Yataco RM, Galea JT, Lecca LW, Kritski AL, Murray MB, Mitnick CD. Prevalence of pyrazinamide resistance and Wayne assay performance analysis in a tuberculosis cohort in Lima, Peru. The International Journal of Tuberculosis and Lung Disease:the Official Journal of the International Union Against Tuberculosis and Lung Disease, 2017, 21(8):894-901.
    [29] Alcántara R, Fuentes P, Antiparra R, Santos M, Gilman RH, Kirwan DE, Zimic M, Sheen P. MODS-Wayne, a colorimetric adaptation of the microscopic-observation drug susceptibility (MODS) assay for detection of Mycobacterium tuberculosis pyrazinamide resistance from sputum samples. Journal of Clinical Microbiology, 2019, 57(2):e01162-e01118.
    [30] Alcántara R, Fuentes P, Marin L, Kirwan DE, Gilman RH, Zimic M, Sheen P. Direct determination of pyrazinamide (PZA) susceptibility by sputum microscopic observation drug susceptibility (MODS) culture at neutral pH:the MODS-PZA assay. Journal of Clinical Microbiology, 2020, 58(5):e01165-e01119.
    [31] Zhou M, Geng XL, Chen J, Wang XD, Wang DB, Deng JY, Zhang ZP, Wang WH, Zhang XN, Wei HP. Rapid colorimetric testing for pyrazinamide susceptibility of M. tuberculosis by a PCR-based in-vitro synthesized pyrazinamidase method. PLoS One, 2011, 6(11):e27654.
    [32] Muehlig A, Jahn IJ, Heidler J, Jahn M, Weber K, Sheen P, Zimic M, Cialla-May D, Popp J. Molecular specific and sensitive detection of pyrazinamide and its metabolite pyrazinoic acid by means of surface enhanced Raman spectroscopy employing in situ prepared colloids. Applied Sciences, 2019, 9(12):2511.
    [33] Jahn IJ,Žukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms:challenges, solutions and potential applications. The Analyst, 2017, 142(7):1022-1047.
    [34] Bonifacio A, Cervo S, Sergo V. Label-free surface-enhanced Raman spectroscopy of biofluids:fundamental aspects and diagnostic applications. Analytical and Bioanalytical Chemistry, 2015, 407(27):8265-8277.
    [35] Hidi IJ, Jahn M, Weber K, Bocklitz T, Pletz MW, Cialla-May D, Popp J. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method:toward the quantification of nitroxoline in spiked human urine samples. Analytical Chemistry, 2016, 88(18):9173-9180.
    [36] Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, Phelan JE, Keyyu JD, Majigo M, Mbugi EV, Dockrell HM, Clark TG, Matee MI, Mpagama S. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics, 2020, 21:174.
    [37] Köser CU, Bryant JM, Becq J, Török ME, Ellington MJ, Marti-Renom MA, Carmichael AJ, Parkhill J, Smith GP, Peacock SJ. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. New England Journal of Medicine, 2013, 369(3):290-292.
    [38] Papaventsis D, Casali N, Kontsevaya I, Drobniewski F, Cirillo DM, Nikolayevskyy V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance:23(2):61-68.
    [39] Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms:comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012, 13:341.
    [40] Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23(12):1098-1113.
    [41] Tam KKG, Leung KSS, Siu GKH, Chang KC, Wong SSY, Ho PL, Leung EKC, Yam WC. Direct detection of pyrazinamide resistance in Mycobacterium tuberculosis by use ofpncA PCR sequencing. Journal of Clinical Microbiology, 2019, 57(8):e00145-e00119.
    [42] Whitfield MG, Marras SAE, Warren RM, van Rie A, Rice J, Wangh LJ, Kreiswirth BN. Rapid Pyrazinamide Drug Susceptibility Testing using a Closed-Tube PCR Assay of the Entire pncA gene. Scientific Reports, 2020, 10:4234.
    [43] Li H, Chen J, Zhou M, Geng XL, Yu JP, Wang WH, Zhang XN, Wei HP. Rapid detection of Mycobacterium tuberculosis and pyrazinamide susceptibility related to pncA mutations in sputum specimens through an integrated gene-to-protein function approach. Journal of Clinical Microbiology, 2014, 52(1):260-267.
    [44] Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease, 2009, 13(11):1320-1330.
    [45] Shi WL, Chen JZ, Feng J, Cui P, Zhang S, Weng XH, Zhang WH, Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerging Microbes& Infections, 2014, 3(1):1-8.
    [46] Zhang Y. Rapid molecular detection of pyrazinamide resistance:the way forward. The International Journal of Tuberculosis and Lung Disease, 2015, 19(2):128.
    [47] Modlin SJ, Marbach T, Werngren J, Mansjö M, Hoffner SE, Valafar F. A typical genetic basis of pyrazinamide resistance in monoresistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65(6):e01916-e01920.
    [48] 洪创跃,王峰,刘小立.高分辨率熔解曲线技术快速筛查结核分枝杆菌pncA基因突变.中华结核和呼吸杂志, 2013, 36(3):198-201.
    Hong CY, Wang F, Liu XL. Detection of pncA mutation associated with pyrazinamide resistance in Mycobacterium tuberculosis by high-resolution melting cure analysis. Chinese Journal of Tuberculosis and Respiratory Diseases, 2013, 36(3):198-201.(in Chinese)
    [49] Pholwat S, Stroup S, Gratz J, Trangan V, Foongladda S, Kumburu H, Juma SP, Kibiki G, Houpt E. Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis, 2014, 94(1):20-25.
    [50] Filipenko ML, Dymova MA, Cherednichenko AG, Khrapov EA, Mishukova OV, Schwartz YS. Detection of mutations in Mycobacterium tuberculosis pncA gene by modified high-resolution melting curve analysis of PCR products. Bulletin of Experimental Biology and Medicine, 2019, 168(2):264-269.
    [51] Nagai Y, Iwade Y, Katayama M, Yamaguchi T, Hayakawa E, Nakano M, Sakai T, Mitarai S, Nosaka T. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. Journal of Infection and Chemotherapy, 2013, 19(6):1116-1125.
    [52] Havlicek J, Dachsel B, Slickers P, Andres S, Beckert P, Feuerriegel S, Niemann S, Merker M, Labugger I. Rapid microarray-based assay for detection of pyrazinamide resistant Mycobacterium tuberculosis. Diagnostic Microbiology and Infectious Disease, 2019, 94(2):147-154.
    [53] Driesen M, Kondo Y, De Jong BC, Torrea G, Asnong S, Desmaretz C, Mostofa KSM, Tahseen S, Whitfield MG, Cirillo DM, Miotto P, Cabibbe AM, Rigouts L. Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clinical Microbiology and Infection, 2018, 24(1):60-64.
    [54] Willby MJ, Wijkander M, Havumaki J, Johnson K, Werngren J, Hoffner S, Denkinger CM, Posey JE. Detection of Mycobacterium tuberculosis pncA mutations by the nipro genoscholar PZA-TB II assay compared to conventional sequencing. Antimicrobial Agents and Chemotherapy, 2017, 62(1):e01871-e01817.
    [55] Update on the use of nucleic acid amplification tests to detect TB and drug-resistant TB:rapid communication. Geneva:World Health Organization, 2021.
    [56] Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. Tuberculosis drug resistance mutation database. PLoS Medicine, 2009, 6(2):e2.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丘厦霞,张晓宇,李慧玲,许鸿文,李恒. 结核分枝杆菌吡嗪酰胺耐药性检测方法的研究进展[J]. 微生物学报, 2022, 62(5): 1587-1599

复制
分享
文章指标
  • 点击次数:658
  • 下载次数: 1291
  • HTML阅读次数: 1912
  • 引用次数: 0
历史
  • 收稿日期:2021-09-27
  • 最后修改日期:2022-01-20
  • 在线发布日期: 2022-04-30
文章二维码