凡纳滨对虾肠道红杆菌科细菌富集碳源筛选及其定向分离
作者:
基金项目:

国家自然科学基金(31672658);宁波市农业重大专项(2021Z105);象山县科技计划(2021XSX040003)


Screening of carbon sources for enrichment and directional isolation ofRhodobacteraceae from the gut of Litopenaeus vannamei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】红杆菌科(Rhodobacteraceae)细菌为凡纳滨对虾肠道微生物的优势类群,在健康对虾肠道中具有较高的相对丰度,是指示对虾健康的关键类群,探究对虾肠道红杆菌科细菌定向富集和分离方法,可为对虾养殖益生菌菌剂的研发提供基础。【方法】利用16S rRNA基因高通量测序技术研究不同碳源添加对凡纳滨对虾肠道中红杆菌科细菌的富集作用,筛选对红杆菌科细菌有显著富集作用的碳源;利用纯培养技术从红杆菌科细菌富集的样品中定向分离红杆菌科细菌,并对其进行鉴定和遗传多样性分析。【结果】添加短链脂肪酸(乙酸、丙酸、丁酸、戊酸)和碳酸氢钠对红杆菌科细菌有显著富集作用,主要富集到Cribrihabitans、Tritonibacter、Rhodovulum、Ruegeria、SagittulaThalassobius属相关菌株;对红杆菌科细菌相对丰度最高的样品进行稀释涂布培养,共分离纯化出303株细菌,分属于2门12科,其中红杆菌科细菌为主导类群共119株,主要包括Tritonibacter (90株)、Phaeobacter (25株)、Sulfitobacter (1株)、Ruegeria (1株)、Roseovarius (1株)和Aliiroseovarius (1株)等6个属;分离的各属红杆菌科细菌占总分离菌株比例与高通量测序结果中红杆菌科各属细菌占比相似。【结论】本研究基于高通量测序技术探究了添加不同碳源连续传代培养对红杆菌科细菌富集的影响,筛选出了5种富集红杆菌科细菌的碳源,并定向分离获得119株红杆菌科细菌,构建了一种有效定向富集分离红杆菌科细菌的方法。

    Abstract:

    [Objective]Rhodobacteraceae, the dominant group of gut microbiota in Litopenaeus vannamei, usually has higher relative abundance in the gut of healthy shrimps, and some members of this family have been identified as the indicators for shrimp health. Therefore, clarifying the method for the directional enrichment and isolation of Rhodobacteraceae from shrimp gut can provide a basis for the development of probiotics for shrimp farming. [Methods]The 16S rRNA gene high-throughput sequencing was applied in the screening of the suitable carbon sources for the enrichment of Rhodobacteraceae. Then, the bacteria were directionally isolated from the enriched samples via the pure culture method. Finally, the taxonomic status and genetic diversity of the isolates were determined.[Results] The addition of short-chain fatty acids (acetic acid, propionic acid, butyric acid, and valeric acid) and sodium bicarbonate facilitated the enrichment of Rhodobacteraceae, which mainly included Cribrihabitans, Tritonibacter, Rhodovulum, Ruegeria, Sagittula, andThalassobius. A total of 303 bacterial strains belonging to 12 families of 2 phyla were isolated from the samples with high relative abundance of Rhodobacteraceae, and 119 out of the 303 strains were identified as members of Rhodobacteraceae, including 90 strains of Tritonibacter, 25 strains ofPhaeobacter, 1 strain of Sulfitobacter, 1 strain of Ruegeria, 1 strain ofRoseovarius, and 1 strain ofAliiroseovarius. In addition, all the isolates of Rhodobacteraceae had the relative abundance similar to the results of high-throughput sequencing. [Conclusion] We explored the effect of different carbon sources on the enrichment and directional isolation of Rhodobacteraceae by using high-throughput sequencing and screened out five carbon sources for isolating 119 strains of Rhodobacteraceae.

    参考文献
    [1] Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. Bergey's Manual of Systematic Bacteriology, 2005, 2(Part C):161.
    [2] Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R, Simon M, Brinkhoff T. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Systematic and Applied Microbiology, 2017, 40(6):370-382.
    [3] Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, Klenk HP, Schomburg D, Petersen J, Göker M. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. The ISME Journal, 2017, 11(6):1483-1499.
    [4] Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. The Prokaryotes, 2014:439-512.
    [5] 李亚峰,李旭光,单连斌,赵勇娇,魏春飞,张磊,王允妹.不同填料对AA-MBBR系统处理效果及菌群多样性影响.工业水处理, 2019, 39(1):73-77.Li YF, Li XG, Shan LB, Zhao YJ, Wei CF, Zhang L, Wang YM. Influence of different fillers on the treatment effect and flora diversity of AA-MBBR systems. Industrial Water Treatment, 2019, 39(1):73-77.(in Chinese)
    [6] 王思鹏.添加蔗糖对凡纳滨对虾养殖水体及其肠道细菌群落的影响.宁波大学学位论文, 2019.
    [7] Guo HP, Huang L, Hu ST, Chen C, Huang XL, Liu W, Wang SP, Zhu YY, Zhao YJ, Zhang DM. Effects of carbon/nitrogen ratio on growth, intestinal microbiota and metabolome of shrimp (Litopenaeus vannamei). Frontiers in Microbiology, 2020, 11:652.
    [8] 张哲,杨章武,葛辉,杜秀萍,卓吓晃,许智海.凡纳滨对虾育苗水体中三种生物絮团的菌群多样性及tax4fun基因功能预测分析.水生生物学报, 2019, 43(4):786-796.Zhang Z, Yang ZW, Ge H, Du XP, Zhuo XH, Xu ZH. Impacts of Litopenaeus vannamei on microbial diversity of three biofloc and predictive analysis of tax4fun gene function during hatchery period in water. Acta Hydrobiologica Sinica, 2019, 43(4):786-796.(in Chinese)
    [9] Allers E, Gómez-Consarnau L, Pinhassi J, Gasol JM,Šimek K, Pernthaler J. Response of Alteromonadaceaeand Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environmental Microbiology, 2007, 9(10):2417-2429.
    [10] Gómez-Consarnau L, Lindh MV, Gasol JM, Pinhassi J. Structuring of bacterioplankton communities by specific dissolved organic carbon compounds. Environmental Microbiology, 2012, 14(9):2361-2378.
    [11] Suman J, Zubrova A, Rojikova K, Pechar R, Svec P, Cajthaml T, Ulbrich P, Ridl J, Strnad H, Uhlik O. Pseudogemmobacter bohemicus gen. nov., sp. nov., a novel taxon from the Rhodobacteraceae family isolated from heavy-metal-contaminated sludge. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(8):2401-2407.
    [12] Martens T, Gram L, Grossart HP, Kessler D, Müller R, Simon M, Wenzel SC, Brinkhoff T. Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microbial Ecology, 2007, 54(1):31-42.
    [13] Curson ARJ, Liu J, Bermejo Martínez A, Green RT, Chan Y, Carrión O, Williams BT, Zhang SH, Yang GP, Bulman Page PC, Zhang XH, Todd JD. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology, 2017, 2:17009.
    [14] He PJ, Han WH, Shao LM, Lü F. One-step production of C6-C8 carboxylates by mixed culture solely grown on CO. Biotechnology for Biofuels, 2018, 11:4.
    [15] Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ, Chen GJ, Du ZJ. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome, 2018, 6(1):230.
    [16] 林淼,王阔鹏,陈映良,孙文婧,封丽梅,胡梓轩.乙醇对瘤胃液接种稻秸的体外发酵产物及细菌群落结构的影响.生物技术通报, 2020, 36(2):91-99.Lin M, Wang KP, Chen YL, Sun WJ, Feng LM, Hu ZX. Effects of ethanol on metabolites and bacterial community of rice straw cocultured with rumen fluid in vitro. Biotechnology Bulletin, 2020, 36(2):91-99.(in Chinese)
    [17] Li M, Gong JH, Cottrill M, Yu H, De Lange C, Burton J, Topp E. Evaluation of QIAamp® DNA Stool Mini Kit for ecological studies of gut microbiota. Journal of Microbiological Methods, 2003, 54(1):13-20.
    [18] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:high-resolution sample inference from Illumina amplicon data. Nature Methods, 2016, 13(7):581-583.
    [19] Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2):346-351.
    [20] Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 2015, 518(7537):94-97.
    [21] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484):559-563.
    [22] Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology& Evolution, 2016, 1(1):15.
    [23] Goldford JE, Lu NX, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segrè D, Mehta P, Sanchez A. Emergent simplicity in microbial community assembly. Science, 2018, 361(6401):469-474.
    [24] Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environmental Microbiology, 2009, 11(4):823-832.
    [25] Zhang Y, Hu J, Ma HY, Yang HH, Guo LJ. Overexpressing atpXF enhanced photo-fermentative hydrogen production performance of Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2017, 42(15):9641-9649.
    [26] 郑耀通,高树芳.耐氨光合细菌Rhodobacter sphaeroides G2B处理有机废水产氢性能研究.武夷科学, 2003, 19(0):10-15.Zheng YT, Gao SF. Studied on the characters of hydrogen production by endure ammonia photosynthetic Rhodobacter sphaeroides G2B with organic wastewater. Wuyi Science Journal, 2003, 19(0):10-15.(in Chinese)
    [27] Sørheim R, Torsvik VL, Goksøyr J. Phenotypical divergences between populations of soil bacteria isolated on different media. Microbial Ecology, 1989, 17(2):181-192.
    [28] 杨隽娴.潮间带植物生境药用微生物的获得与鉴定.青岛科技大学硕士学位论文, 2008.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高繁,干恩磊,刘巍,郭海朋,王艳婷,王若愚,燕孟琛,董鹏生,张德民. 凡纳滨对虾肠道红杆菌科细菌富集碳源筛选及其定向分离[J]. 微生物学报, 2022, 62(5): 1805-1818

复制
分享
文章指标
  • 点击次数:585
  • 下载次数: 1157
  • HTML阅读次数: 1468
  • 引用次数: 0
历史
  • 收稿日期:2021-09-22
  • 最后修改日期:2021-10-19
  • 在线发布日期: 2022-04-30
文章二维码