低浓度红霉素对猪链球菌蛋白表达、交叉耐药性与荚膜多糖的影响
作者:
基金项目:

江西省教育厅科学技术研究项目(GJJ202631,GJJ181090);南昌师范学院博士科研启动基金(NSBSJJ2018023);南昌师范学院校级科研项目(20RWYB02)


Effects of low-concentration erythromycin on protein expression, cross resistance and capsular polysaccharides of Streptococcus suis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探索低浓度红霉素对猪链球菌蛋白表达、交叉耐药性与荚膜多糖的影响,为进一步研究饲料中低浓度抗生素促生长剂对环境中微生物的影响奠定基础。【方法】猪链球菌接触低浓度红霉素后,利用蛋白质组学iTRAQ技术,筛选关键差异表达蛋白。同时测定猪链球菌的交叉耐药性和荚膜多糖含量。【结果】共鉴定到差异表达蛋白181个,占总鉴定蛋白的12%,猪链球菌通过改变自身蛋白质组的表达量,以适应红霉素的选择性压力。多数差异表达蛋白参与催化和代谢过程,属于膜蛋白,其中13个ATP结合盒转运蛋白、3个核糖体蛋白、DNA回旋酶上调表达,8个荚膜多糖蛋白、DNA聚合酶Ⅳ下调表达。接触低浓度红霉素后,猪链球菌对多种抗生素出现交叉耐药性,消除红霉素后,药物敏感性恢复。接触低浓度红霉素后,荚膜多糖含量也未发生大幅度变化。【结论】猪链球菌为适应低浓度红霉素的选择性压力,大量表达多重耐药的主动外排泵,增加核糖体蛋白的表达量,降低荚膜多糖蛋白的表达量。

    Abstract:

    [Objective] To explore the effects of low-concentration erythromycin on protein expression, cross resistance and capsular polysaccharide of Streptococcus suis, so as to lay a foundation for further studying the effects of low-concentration antibiotic growth promoters in feed on microorganisms in the environment. [Methods] After S.suis was exposed to low-concentration erythromycin, key differentially expressed proteins were screened by iTRAQ. At the same time, we measured the cross resistance of S.suis and the content of capsular polysaccharide.[Results] A total of 181 differentially expressed proteins were identified, accounting for 12% of the total identified proteins. In order to adapt to the selective pressure of erythromycin, S.suis changed the expression of its own proteome. Most differentially expressed proteins were involved in catalytic and metabolic processes, and they belonged to membrane proteins. Among them, 13 ATP-binding cassette transporters, 3 ribosomal proteins and DNA gyrase were up-regulated, while 8 capsular polysaccharide proteins and DNA polymerase Ⅳ were down-regulated. When S.suis was exposed to low-concentration erythromycin, it revealed cross resistance to a variety of antibiotics, whereas there was no significant change in the content of capsular polysaccharide. After elimination of erythromycin, the drug sensitivity recovered. [Conclusion] To adapt to the selective pressure of low-concentration erythromycin, S.suis up-regulated the expression of multidrug resistance efflux pumps to increase the levels of ribosomal protein and decrease the levels of capsular polysaccharide protein.

    参考文献
    [1] 蔡田,罗行炜,徐引第,魏单单,贺丹丹,刘建华,苑丽,胡功政.猪链球菌对大环内酯类抗生素的耐药性研究.河南农业大学学报, 2019, 53(1):73-81.Cai T, Luo XW, Xu YD, Wei DD, He DD, Liu JH, Yuan L, Hu GZ. Research on the resistance of Streptococcus suis to macrolide antibiotics. Journal of Henan Agricultural University, 2019, 53(1):73-81.(in Chinese)
    [2] 杜实之.环境中抗生素的残留、健康风险与治理技术综述.环境科学与技术, 2021, 44(9):37-48.Du SZ. Research progress on antibiotic pollution, health risks and treatment technology in environments. Environmental Science& Technology, 2021, 44(9):37-48.(in Chinese)
    [3] 陈颖欣,陈佳华,张志瑾,冯锦涛,梅亮,王燕.畜禽养殖场抗生素耐药基因残留及传播研究进展.家畜生态学报, 2021, 42(3):1-7.Chen YX, Chen JH, Zhang ZJ, Feng JT, Mei L, Wang Y. Research progress of antibiotic resistance gene residues and dissemination in livestock farms. Journal of Domestic Animal Ecology, 2021, 42(3):1-7.(in Chinese)
    [4] Chow LKM, Ghaly TM, Gillings MR. A survey of sub-inhibitory concentrations of antibiotics in the environment. Journal of Environmental Sciences, 2021, 99:21-27.
    [5] Feng W, Zhang L, Yuan Q, Wang Y, Yao P, Xia PY, Sun FJ. Effect of sub-minimal inhibitory concentration ceftazidime on the pathogenicity of uropathogenic Escherichia coli. Microbial Pathogenesis, 2021, 151:104748.
    [6] Sun FJ, Yuan Q, Wang Y, Cheng L, Li XY, Feng W, Xia PY. Sub-minimum inhibitory concentration ceftazidime inhibits Escherichia coli biofilm formation by influencing the levels of the ibpA gene and extracellular indole. Journal of Chemotherapy, 2020, 32(1):7-14.
    [7] Abdel-Rhman SH, Rizk DE, Abdelmegeed ES. Effect of sub-minimum inhibitory concentrations of tyrosol and EDTA on quorum sensing and virulence of Pseudomonas aeruginosa. Infection and Drug Resistance, 2020, 13:3501-3511.
    [8] Schafhauser BH, Kristofco LA, De Oliveira CMR, Brooks BW. Global review and analysis of erythromycin in the environment:occurrence, bioaccumulation and antibiotic resistance hazards. Environmental Pollution, 2018, 238:440-451.
    [9] 闫向龙,石艳春,郑源强,孙瑶,孙颖,栾艳淼.大肠埃希菌主动外排泵的研究进展.医学综述, 2021, 27(10):1885-1890.Yan XL, Shi YC, Zheng YQ, Sun Y, Sun Y, Luan YM. Research progress of active efflux pumps in Escherichia coli. Medical Recapitulate, 2021, 27(10):1885-1890.(in Chinese)
    [10] Orelle C, Mathieu K, Jault JM. Multidrug ABC transporters in bacteria. Research in Microbiology, 2019, 170(8):381-391.
    [11] Lowrence RC, Subramaniapillai SG, Ulaganathan V, Nagarajan S. Tackling drug resistance with efflux pump inhibitors:from bacteria to cancerous cells. Critical Reviews in Microbiology, 2019, 45(3):334-353.
    [12] 郭磊艳,赵旦,桂嘉烯,闻舒娴,郑平.核糖体的组成、结构、功能和检测.科技通报, 2020, 36(5):1-12.Guo LY, Zhao D, Gui JX, Wen SX, Zheng P. Composition, structure, function and detection of ribosome. Bulletin of Science and Technology, 2020, 36(5):1-12.(in Chinese)
    [13] 邓万燕,谢建平.细菌核糖体靶向抗生素及耐药机制.国外医药:抗生素分册, 2017, 38(6):20-30.Deng WY, Xie JP. Bacterial ribosome-targeting antibiotics and drug-resistance mechanisms. World Notes on Antibiotics, 2017, 38(6):20-30.(in Chinese)
    [14] 冯凯,辛杰,田俊,常宏宏,高文超.天然抗生素结构与构效关系研究进展.中国抗生素杂志, 2021, 46(9):809-820.Feng K, Xin J, Tian J, Chang HH, Gao WC. Research progress of structures and structure-activity relationships of natural antibiotics. Chinese Journal of Antibiotics, 2021, 46(9):809-820.(in Chinese)
    [15] 谢黎卿,杨洋,彭远义,李能章.病原微生物荚膜多糖的生物学功能.畜牧兽医学报, 2021, 52(3):576-587.Xie LQ, Yang Y, Peng YY, Li NZ. Research progress on the function and immunity of capsular polysaccharide. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3):576-587.(in Chinese)
    [16] Segura M, Fittipaldi N, Calzas C, Gottschalk M. Critical Streptococcus suis virulence factors:are they all really critical?Trends in Microbiology, 2017, 25(7):585-599.
    [17] Okura M, Takamatsu D, Maruyama F, Nozawa T, Nakagawa I, Osaki M, Sekizaki T, Gottschalk M, Kumagai Y, Hamada S. Genetic analysis of capsular polysaccharide synthesis gene clusters from all serotypes of Streptococcus suis:potential mechanisms for generation of capsular variation. Applied and Environmental Microbiology, 2013, 79(8):2796-2806.
    [18] 于文会,许晶,魏庆微,姜晓文,单安山.蒲公英水提物对猪链球菌生物被膜体外干预作用.畜牧兽医学报, 2015, 46(10):1875-1881.Yu WH, Xu J, Wei QW, Jiang XW, Shan AS. Dandelion aqueous extract affects biofilm formation by S. suis. Chinese Journal of Animal and Veterinary Sciences, 2015, 46(10):1875-1881.(in Chinese)
    [19] 杨艳北.基于谷氨酰胺合成酶靶标探讨红霉素干预木糖葡萄球菌生物被膜形成的机制.东北农业大学博士学位论文, 2017.
    [20] 王畅.芦丁干预猪链球菌生物被膜形成对荚膜多糖含量和结构的影响.东北农业大学硕士学位论文, 2017.
    [21] Velamakanni S, Lau CHF, Gutmann DAP, Venter H, Barrera NP, Seeger MA, Woebking B, Matak-Vinkovic D, Balakrishnan L, Yao Y, U EC, Shilling RA, Robinson CV, Thorn P, Van Veen HW. A multidrug ABC transporter with a taste for salt. PLoS One, 2009, 4(7):e6137.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨艳北,许晶,沈城辉,冯育林,孙勇. 低浓度红霉素对猪链球菌蛋白表达、交叉耐药性与荚膜多糖的影响[J]. 微生物学报, 2022, 62(5): 1843-1850

复制
分享
文章指标
  • 点击次数:256
  • 下载次数: 943
  • HTML阅读次数: 934
  • 引用次数: 0
历史
  • 收稿日期:2021-09-28
  • 最后修改日期:2021-12-11
  • 在线发布日期: 2022-04-30
文章二维码