薇甘菊根际可培养固氮菌和氨化细菌的分离鉴定与促生作用
作者:
基金项目:

国家自然科学基金(32172430)


Isolation, identification and growth-promoting effects of culturable nitrogen-fixing bacteria and ammonifying bacteria in rhizosphere soil of Mikania micrantha
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】固氮菌和氨化细菌是氮循环产生生物有效氮的关键起始环节,直接影响了外来入侵植物的生长速度和扩散进程。然而,关于典型入侵植物薇甘菊根际可培养固氮菌和氨化细菌的研究尚未见报道,这在很大程度上制约了我们对薇甘菊根际高效的氮素转化机制的深刻理解。【方法】采用传统平板涂布培养法对野外采集的薇甘菊根际土壤中的可培养固氮菌和氨化细菌进行了分离鉴定,并进行了接种验证实验。【结果】结果表明,入侵植物薇甘菊根际土壤中的固氮菌和氨化细菌的菌群密度显著高于两个本地伴生植物(火炭母和鸡屎藤),其固氮效率及有机氮矿化效率也优于2个本地种;系统发育分析表明:薇甘菊根际的固氮菌菌株归类于5个属,分别为伯克霍尔德氏菌属(Burkholderia)、肠杆菌属(Enterobacter)、植物杆菌属(Phytobacter)、新肠杆菌属(Kosakonia)和根瘤菌属(Rhizobium);氨化细菌归类于7个属,分别为沙雷氏菌属(Serratia)、不动杆菌属(Acinetobacter)、假单胞菌属(Pseudomonas)、博德特氏菌属(Bordetella)、寡养单胞菌属(Stenotrophomonas)、苍白杆菌属(Ochrobactrum)和金黄杆菌属(Chryseobacterium);其中伯克霍尔德氏菌属与根瘤菌属是薇甘菊根际的优势固氮菌,沙雷氏菌属是薇甘菊根际的优势氨化细菌。此外,温室盆栽接种试验表明薇甘菊根际土壤的可培养固氮菌和氨化细菌对其幼苗生长具有显著的促进效应,其中根瘤菌属菌株YHAzMm-21和苍白杆菌属菌株YHAmMm-14的促生效果最佳,有望开发为微生物菌肥或工程微生物。【结论】薇甘菊根际可培养固氮菌和氨化细菌的菌群密度及其转化效率均优于本地种,并能促进自身生长。该研究明确了薇甘菊根际可培养菌群在氮循环中的贡献,并为筛选高效氮循环功能菌株提供了理想材料。

    Abstract:

    [Objective] Nitrogen-fixing bacteria and ammonifying bacteria are the key initial links of nitrogen cycle to produce bioavailable nitrogen, which directly affect the growth and spread of invasive alien plants. However, the culturable nitrogen-fixing bacteria and ammonifying bacteria in the rhizosphere of typical invasive plant Mikania micrantha H.B.K. have been rarely reported, which restricts our understanding of the efficient nitrogen transformation mechanism therein. [Methods] The culturable nitrogen-fixing bacteria and ammonifying bacteria in the rhizosphere soil of M.micrantha were isolated and purified by traditional culture method, and the inoculation experiment was carried out for verification. [Results] The density and nitrogen transformation rate of nitrogen-fixing bacteria and ammonifying bacteria and their nitrogen fixation efficiency and organic nitrogen mineralization efficiency were all higher than those of two co-occurring native competitors, Persicaria chinensis and Paederia scandens. Phylogenetic tree indicated that the nitrogen-fixing bacterial strains in the rhizosphere of M.micrantha were classified into five genera, including Burkholderia, Enterobacter, Phytobacter, Kosakonia and Rhizobium, and ammonifying bacterial strains fell into seven genera, including Serratia, Acinetobacter, Pseudomonas, Bordetella, Stenotrophomonas, Ochrobactrum and Chryseobacterium. Both Burkholderia and Rhizobium of the nitrogen-fixing bacteria and Serratia of the ammonifying bacteria were the dominant functional bacteria of M.micrantha. The greenhouse pot experiments of inoculation with the culturable functional strains demonstrated that the two groups of bacteria significantly promoted the growth of M.micrantha seedlings. Amongst them Rhizobium YHAzMm-21 of nitrogen-fixing bacteria and Ochrobactrum YHAmMm-14 of ammonifying bacteria had the best growth-promoting effects, which were expected to be developed into microbial fertilizers or engineering microorganisms. [Conclusion]The density and nitrogen transformation efficiency of the culturable nitrogen-fixing bacteria and ammonifying bacteria in the rhizosphere soil of M.micrantha outweighed those of the native species, which promoted the plant growth. These results clarified the contribution of the culturable flora in the rhizosphere soil ofM.micrantha to nitrogen cycle, and provided an ideal material for screening functional strains with high nitrogen cycle rates.

    参考文献
    [1] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [2] Hawkes CV, Wren IF, Herman DJ, Firestone MK. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 2005, 8(9):976-985.
    [3] Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis. New Phytologist, 2008, 177(3):706-714.
    [4] Chen BM, Peng SL, Ni GY. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biological Invasions, 2009, 11(6):1291-1299.
    [5] Stark JM, Norton JM. The invasive annual cheatgrass increases nitrogen availability in 24-year-old replicated field plots. Oecologia, 2015, 177(3):799-809.
    [6] McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 2016, 104(4):994-1002.
    [7] Yu HX, Le Roux JJ, Jiang ZY, Sun F, Peng CL, Li WH. Soil nitrogen dynamics and competition during plant invasion:insights from Mikania micrantha invasions in China. New Phytologist, 2021, 229(6):3440-3452.
    [8] Chen BM, Peng SL, D'Antonio CM, Li DJ, Ren WT. Non-additive effects on decomposition from mixing litter of the invasive Mikania micrantha H.B.K. with native plants. PLoS One, 2013, 8(6):e66289.
    [9] Jo I, Fridley JD, Frank DA. Invasive plants accelerate nitrogen cycling:evidence from experimental woody monocultures. Journal of Ecology, 2017, 105(4):1105-1110.
    [10] 陈宝明,韦慧杰,陈伟彬,朱政财,原亚茹,张永隆,蓝志刚.外来入侵植物对土壤氮转化主要过程及相关微生物的影响.植物生态学报, 2018, 42(11):1071-1081.Chen BM, Wei HJ, Chen WB, Zhu ZC, Yuan YR, Zhang YL, Lan ZG. Effects of plant invasion on soil nitrogen transformation processes and its associated microbial. Chinese Journal of Plant Ecology, 2018, 42(11):1071-1081.(in Chinese)
    [11] Liu B, Yan J, Li W, Yin L, Li P, Yu H, Xing L, Cai M, Wang H, Zhao M, Zheng J, Sun F, Wang Z, Jiang Z, Ou Q, Li S, Qu L, Zhang Q, Zheng Y, Qiao X, Xi Y, Zhang Y, Jiang F, Huang C, Liu C, Ren Y, Wang S, Liu H, Guo J, Wang H, Dong H, Peng C, Qian W, Fan W, Wan F. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nature Communications, 2020, 11:340.
    [12] 赵彤,蒋跃利,闫浩,黄懿梅.土壤氨化过程中微生物作用研究进展.应用与环境生物学报, 2014, 20(2):315-321.Zhao T, Jiang YL, Yan H, Huang YM. Research advances on microbial function in soil ammonifying process. Chinese Journal of Applied and Environmental Biology, 2014, 20(2):315-321.(in Chinese)
    [13] Dastager SG, Deepa CK, Pandey A. Potential plant growth-promoting activity of Serratia nematodiphilaNII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology, 2011, 27(2):259-265.
    [14] Meng XF, Bertani I, Abbruscato P, Piffanelli P, Licastro D, Wang CH, Venturi V. Draft genome sequence of rice endophyte-associated isolate Kosakonia oryzae KO348. Genome Announcements, 2015, 3(3):e00594-15.
    [15] Lu JK, Yang FC, Wang SK, Ma HB, Liang JF, Chen YL. Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium-like and Burkholderia pyrrocinia-like strains. Frontiers in Microbiology, 2017, 8:2255.
    [16] Pillonetto M, Arend LN, Faoro H, D'Espindula HRS, Blom J, Smits THM, Mira MT, Rezzonico F. Emended description of the genus Phytobacter, its type species Phytobacter diazotrophicus(Zhang 2008) and description of Phytobacter ursingii sp. nov.. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1):176-184.
    [17] Tsegaye B, Balomajumder C, Roy P. Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. Environmental Science and Pollution Research, 2018, 25(30):30585-30596.
    [18] Priyanka R, Nakkeeran S. Ochrobactrum cicerimediated induction of defence genes and antifungal metabolites enhance the biocontrol efficacy for the management of Botrytis leaf blight of Lilium under protected conditions. Journal of Plant Pathology, 2019, 101(2):323-337.
    [19] Quan Z, Zhang X, Davidson EA, Zhu FF, Li SL, Zhao XH, Chen X, Zhang LM, He JZ, Wei WX, Fang YT. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices:a global analysis on field 15N tracer studies. Earth's Future, 2021, 9(5):e2020EF001514.
    [20] 王连林,张志成,商立军,陈铁成.新型微生物功能菌剂的筛选与功能菌肥的研制.化肥工业, 2019, 46(3):6-9, 47.Wang LL, Zhang ZC, Shang LJ, Chen TC. Screening of new microbial functional bacterial agents and development of functional bacterial fertilizer. Chemical Fertilizer Industry, 2019, 46(3):6-9, 47.(in Chinese)
    [21] 陈家欣,谈慧娟,林楠,谭诗琳,郑海彬,曾晓燕,袁红旭,卢冬梅.南海东海岛近海固氮细菌多样性及对菜心的促生作用.微生物学报, 2020, 60(2):359-370.Chen JX, Tan HJ, Lin N, Tan SL, Zheng HB, Zeng XY, Yuan HX, Lu DM. Diversity and growth promotion of nitrogen-fixing bacteria isolated from the offshore of Donghai Island in the South China Sea. Acta Microbiologica Sinica, 2020, 60(2):359-370.(in Chinese)
    [22] Lowe S, Browne M, Boudjelas S, De Poorter M. 100 of the world's worst invasive alien species:a selection from the global invasive species database. Auckland, New Zealand:The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 2000.
    [23] Day MD, Clements DR, Gile C, Senaratne WKAD, Shen SC, Weston LA, Zhang FD. Biology and impacts of Pacific Islands invasive species. 13.Mikania micrantha Kunth (Asteraceae). Pacific Science, 2016, 70(3):257-285.
    [24] 刘介东,李凤玲,张朝旺,钟超奇,徐东山.从化市太平镇森林植物资源调查.广东林业科技, 2014, 30(4):53-57.Liu JD, Li FL, Zhang CW, Zhong CQ, Xu DS. Investigation on forest plant resource in taiping town of Conghua. Guangdong Forestry Science and Technology, 2014, 30(4):53-57.(in Chinese)
    [25] 杨从发,王淑军,陈静,许兴友.自生固氮菌的分离鉴定.淮海工学院学报:自然科学版, 1999, 8(3):56-58.Yang CF, Wang SJ, Chen J, Xu XY. The isolation and identification of abiogenous Azotobacter. Journal of Huaihai Institute of Technology, 1999, 8(3):56-58.(in Chinese)
    [26] 林先贵.土壤微生物研究原理与方法.北京:高等教育出版社, 2010.
    [27] 鲍士旦.土壤农化分析. 3版.北京:中国农业出版社, 2000.
    [28] 马悦欣,邵华,刘长发, Schneider Oliver,晏再生,尹丽丽,孙丽丽.牙鲆海水循环养殖系统生物膜上3种细菌的数量与代谢活性.中国水产科学, 2009, 16(1):97-103.Ma YX, Shao H, Liu CF, Oliver S, Yan ZS, Yin LL, Sun LL. Metabolic responses and quantitative counts of heterotrophic bacteria, ammonifiers and nitrifiers in moving bed bioflter biofi lms in a marine recirculating aquaculture system. Journal of Fishery Sciences of China, 2009, 16(1):97-103.(in Chinese)
    [29] Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK. Potassium solubilizing rhizobacteria (KSR):isolation, identification, and K-release dynamics from waste Mica. Ecological Engineering, 2015, 81:340-347.
    [30] 叶冰竹,施晟璐,张润枝,聂鹏卿,唐晓清,王康才.缺氮和复氮处理对菘蓝幼苗生长及部分生理生化指标的影响.植物资源与环境学报, 2015, 24(4):83-88.Ye BZ, Shi SL, Zhang RZ, Nie PQ, Tang XQ, Wang KC. Effects of nitrogen deficiency and nitrogen recovery treatments on growth and some physiological and biochemical indexes of Isatis indigotica seedlings. Journal of Plant Resources and Environment, 2015, 24(4):83-88.(in Chinese)
    [31] 许浩,胡朝臣,许士麒,孙新超,刘学炎.外来植物入侵对土壤氮有效性的影响.植物生态学报, 2018, 42(11):1120-1130.Xu H, Hu CC, Xu SQ, Sun XC, Liu XY. Effects of exotic plant invasion on soil nitrogen availability. Chinese Journal of Plant Ecology, 2018, 42(11):1120-1130.(in Chinese)
    [32] 李振高,骆永明,滕应.土壤与环境微生物研究法.北京:科学出版社, 2008.
    [33] Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Opportunities for biological nitrogen fixation in rice and other non-legumes. Dordrecht:Springer Netherlands, 1997:37-44.
    [34] O'Sullivan DJ, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 1992, 56(4):662-676.
    [35] Lee YN, Koo CD. Identification of bacteria isolated from diseased Neungee mushroom, Sarcodon aspratus. Journal of Basic Microbiology, 2007, 47(1):31-39.
    [36] Peng GX, Zhang W, Luo HF, Xie HW, Lai WH, Tan ZY. Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia. International Journal of Systematic andEvolutionary Microbiology, 2009, 59(Pt 7):1650-1655.
    [37] Gosal SK, Saroa GS, Vikal Y, Cameotra SS, Pathania N, Bhanot A. Isolation and molecular characterisation of diazotrophic growth-promoting bacteria from wheat rhizospheric soils of Punjab. Soil Research, 2011, 49(8):725.
    [38] 程杰杰,殷超凡,萨尔山别克·热阿合曼,孙帅欣,陈云鹏.固氮菌Kosakonia radicincitans GXGL-4A对玉米和水稻的促生作用及其根际定殖动态.江苏农业科学, 2018, 46(2):33-37.Cheng JJ, Yin CF, Salsanbuick Z, Sun SX, Chen YP. Growth-promoting effect of nitrogen-fixing bacteria Kosakonia radicincitans GXGL-4A on maize and rice and its rhizosphere colonization dynamics. JiangsuAgricultural Sciences, 2018, 46(2):33-37.(in Chinese)
    [39] Bergottini VM, Filippidou S, Junier T, Johnson S, Chain PS, Otegui MB, Zapata PD, Junier P. Genome sequence of Kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacterium isolated from yerba mate (Ilex paraguariensis St. hill.). Genome Announcements, 2015, 3(2):e00239-e00215.
    [40] Witzel K, Strehmel N, Baldermann S, Neugart S, Becker Y, Becker M, Berger B, Scheel D, Grosch R, Schreiner M, Ruppel S. Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T. Plant and Soil, 2017, 419(1/2):557-573.
    [41] Witzel K,Üstün S, Schreiner M, Grosch R, Börnke F, Ruppel S. A proteomic approach suggests unbalanced proteasome functioning induced by the growth-promoting bacterium Kosakonia radicincitans in Arabidopsis. Frontiers in Plant Science, 2017, 8:661.
    [42] 段佳丽,薛泉宏,舒志明,王东胜,何斐.放线菌Act12与腐植酸钾配施对丹参生长及其根域微生态的影响.生态学报, 2015, 35(6):1807-1819.Duan JL, Xue QH, Shu ZM, Wang DS, He F. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecologica Sinica, 2015, 35(6):1807-1819.(in Chinese)
    [43] Berne C, Montjarret B, Guountti Y, Garcia D. Tributyl phosphate degradation by Serratia odorifera. Biotechnology Letters, 2004, 26(8):681-686.
    [44] Gao J, Li BY, Wang HH, Liu ZQ. Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Current Microbiology, 2014, 69(1):19-24.
    [45] Nalini S, Parthasarathi R. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresource Technology, 2014, 173:231-238.
    [46] Gondil VS, Asif M, Bhalla TC. Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech, 2017, 7(5):338.
    [47] Faisal M, Hasnain S. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Letters in Applied Microbiology, 2006, 43(4):461-466.
    [48] Lafi FF, Alam I, Geurts R, Bisseling T, Bajic VB, Hirt H, Saad MM. Draft genome sequence of Ochrobactrum intermedium strain SA148, a plant growth-promoting desert rhizobacterium. Genome Announcements, 2017, 5(9):e01707-e01716.
    [49] 王样庭,陈玲,王陶,李文,李同祥,刘洵.牛蒡根际土壤解磷菌的筛选、鉴定及生长特性.河南农业科学, 2018, 47(10):57-63.Wang YT, Chen L, Wang T, Li W, Li TX, Liu X. Screening and identification of phosphate-solubilizing bacteria from Arctium lappa rhizosphere soil and its growth characteristics. Journal of Henan Agricultural Sciences, 2018, 47(10):57-63.(in Chinese)
    [50] Pascon RC, Bergamo RF, Spinelli RX, De Souza ED, Assis DM, Juliano L, Vallim MA. Amylolytic microorganism from são Paulo zoo composting:isolation, identification, and amylase production. Enzyme Research, 2011, 2011:679624.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余涵霞,梁浩林,王子轩,杨晓宇,李伟华. 薇甘菊根际可培养固氮菌和氨化细菌的分离鉴定与促生作用[J]. 微生物学报, 2022, 62(5): 1851-1863

复制
分享
文章指标
  • 点击次数:382
  • 下载次数: 1190
  • HTML阅读次数: 1098
  • 引用次数: 0
历史
  • 收稿日期:2021-09-29
  • 最后修改日期:2021-12-26
  • 在线发布日期: 2022-04-30
文章二维码