基于比较基因组学分析大黄鱼来源波罗的海希瓦氏菌的防御系统
作者:
基金项目:

浙江省自然科学基金(LY19C200003);国家自然科学基金(32172188)


Comparative genomics of defense system in Shewanella baltica isolated from large yellow croaker
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】波罗的海希瓦氏菌是冷藏海产品中常见的腐败菌,通过全基因组测序和转录组测序,分析它们的规律成簇间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)系统和限制修饰(restricted modification,R-M)系统,为波罗的海希瓦氏菌的基础生物学研究和海产品中微生物的致腐机制提供理论基础。【方法】分析大黄鱼来源波罗的海希瓦氏菌SB-19株和W-3株的致腐能力,对W-3株的全基因组序列进行测序、组装和注释,结合已报道的SB-19株和27株希瓦氏菌的全基因组序列,采用比较基因组学方法探究它们的CRISPR和R-M系统的差异,进而对SB-19株和W-3株在不同生长时期进行转录组测序,以及两株菌内致腐相关基因的共进化分析。【结果】灭菌大黄鱼汁中产生挥发性盐基总氮和三甲胺值显示波罗的海希瓦氏菌SB-19株和W-3株分别为强致腐能力和弱致腐能力菌株;平均核苷酸一致性证实SB-19株和W-3株为波罗的海希瓦氏菌,但基于全基因组构建的系统发育树则发现二者之间存在遗传信息上的差异;SB-19株具有相对完善的CRISPR系统,而W-3株则有更丰富的R-M系统;转录组测序反映出SB-19株在对数期和平台期的生长阶段具有更为活跃的新陈代谢能力和环境适应能力;但是这2株细菌中与致腐相关基因在进化过程中较为保守。【结论】CRISPR系统和R-M系统为异养型的波罗的海希瓦氏菌提供了较好的异源遗传信息入侵屏障,在维持物种遗传稳定性方面发挥了重要作用,但不参与该菌致腐能力差异的进化过程

    Abstract:

    [Objective]Shewanella baltica is a specific spoilage organism commonly foundin seafood during cold storage. To figure out the defense system of S.baltica isolated from large yellow croaker (Pseudosciaena crocea), we analyzed the clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification (R-M) system of this bacterium, aiming to provide a theoretical basis for the research on S.baltica and the spoilage mechanism of seafood. [Methods] The spoilage abilities of S.baltica strains SB-19 and W-3 were determined. The whole-genome sequences of the two strains were compared with 27 Shewanella strains, and their CRISPRs and R-M system were analyzed through comparative genomics tools. Finally, the transcriptomes of SB-19 and W-3 strains in different growth phases were sequenced, and the coevolution of spoilage-related genes in the two strains was analyzed. [Results] The total volatile basic nitrogen and trimethylamine produced in the sterilized fish juice showed that the SB-19 and W-3 had strong and weak spoilage abilities, respectively. The values of average nucleotide identity confirmed that both SB-19 and W-3 were S.baltica, while the phylogenetic tree based on the whole genomes showed genetic differences between them. SB-19 had a complete CRISPR system, while W-3 had an abundant R-M system. Transcriptome sequencing results indicated that SB-19 had more active metabolism and environmental adaptability in the logarithmic phase and stationary phase. The spoilage-related genes in these two strains were relatively conserved during evolution. [Conclusion]The CRISPRs and R-M system in heterotrophic S.baltica provide a good barrier against the invasion of heterologous genetic information and play a role in maintaining the genetic stability of species. However, they are not involved in the evolutionary process of the spoilage ability differences between S.baltica strains.

    参考文献
    [1] Dikow RB. Genome-level homology and phylogeny of Shewanella(Gammaproteobacteria:alteromonadales:Shewanellaceae). BMC Genomics, 2011, 12:237.
    [2] MacDonell MT, Colwell RR. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Systematic and Applied Microbiology, 1985, 6(2):171-182.
    [3] Zhu SQ, Zhang CL, Wu HH, Jie JX, Zeng MY, Liu ZY, Wang CY, Yang HC. Spoilage of refrigerated (4℃)Litopenaeus vannamei:cooperation between Shewanella species and contribution of cyclo-(L-Pro-L-Leu)-dependent quorum sensing. International Journal of Food Science& Technology, 2017, 52(6):1517-1526.
    [4] Zhu JL, Zhao AF, Feng LF, Gao HC. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica. International Journal of Food Microbiology, 2016, 217:146-155.
    [5] Mojica FJM, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. The FEBS Journal, 2016, 283(17):3162-3169.
    [6] 胡丽,陈实.细菌CRISPR-Cas系统的研究进展.微生物学报, 2017, 57(11):1643-1652.Hu L, Chen S. Research progress of CRISPR-Cas system in bacteria. Acta Microbiologica Sinica, 2017, 57(11):1643-1652.(in Chinese)
    [7] 冯欢欢,单彩龙,李金月,陆佳静,王茜璐,沈沁浩,焦红梅,阴银燕,孔桂美,郭停停,李国才. CRISPR系统中Cas蛋白的分类及作用机制.中国病原生物学杂志, 2018, 13(6):652-654, 663.Feng HH, Shan CL, Li JY, Lu JJ, Wang XL, Shen QH, Jiao HM, Yin YY, Kong GM, Guo TT, Li GC. Classification and function mechanisms of Cas proteins in a CRISPR system. Journal of Pathogen Biology, 2018, 13(6):652-654, 663.(in Chinese)
    [8] Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nature Chemical Biology, 2021, 17(1):10-19.
    [9] 吴瑜凡,申进玲,崔思宇,郭旸,吴福平,王翔,邵景东.空肠弯曲菌中规律成簇间隔短回文重复序列(CRISPR)的检测与结构分析.食品科学, 2018, 39(24):139-144.Wu YF, Shen JL, Cui SY, Guo Y, Wu FP, Wang X, Shao JD. Detection and structural analysis of clustered regularly interspaced short palindromic repeat (CRISPR) regions in Campylobacter jejuni.Food Science, 2018, 39(24):139-144.(in Chinese)
    [10] 程娜,蔡针华,吕加平,贾震虎,逄晓阳.保加利亚乳杆菌CRISPR位点的序列分析.生物技术通报, 2018, 34(5):87-93.Cheng N, Cai ZH, Lü JP, Jia ZH, Pang XY. Sequence analysis on the CRISPR sites of Lactobacillus bulgaricus. Biotechnology Bulletin, 2018, 34(5):87-93.(in Chinese)
    [11] Zeng HY, Zhang JM, Li CS, Xie TF, Ling N, Wu QP, Ye YW. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Scientific Reports, 2017, 7:40206.
    [12] 王宇,赵洁,孙志宏,孙天松,张和平.基于比较基因组学分析嗜热链球菌的遗传多样性和防御系统.微生物学报, 2020, 60(5):924-938.Wang Y, Zhao J, Sun ZH, Sun TS, Zhang HP. Comparative genomics of genetic diversity and defense system in Streptococcus thermophilus. Acta Microbiologica Sinica, 2020, 60(5):924-938.(in Chinese)
    [13] Dupuis MÈ, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nature Communications, 2013, 4:2087.
    [14] De Ste Croix M, Vacca I, Kwun MJ, Ralph JD, Bentley SD, Haigh R, Croucher NJ, Oggioni MR. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiology Reviews, 2017, 41(Supp_1):S3-S15.
    [15] Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors:C protein and the Rac prophage repressor. Nucleic Acids Research, 2019, 47(18):9542-9556.
    [16] Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP. Haemophilus influenzaephasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Research, 2007, 35(15):5242-5252.
    [17] Loenen WAM, Raleigh EA. The other face of restriction:modification-dependent enzymes. Nucleic Acids Research, 2014, 42(1):56-69.
    [18] 王晓阳,郭全友,姜朝军,杨絮.养殖大黄鱼鲜度保持及特定腐败菌特征研究进展.包装工程, 2020, 41(17):15-24.Wang XY, Guo QY, Jiang CJ, Yang X. Advances in research on freshness maintenance and characteristics of specific spoilage organisms of cultured large yellow croaker. Packaging Engineering, 2020, 41(17):15-24.(in Chinese)
    [19] Odeyemi OA, Burke CM, Bolch CJS, Stanley R. Evaluation of spoilage potential and volatile metabolites production by Shewanella baltica isolated from modified atmosphere packaged live mussels. Food Research International, 2018, 103:415-425.
    [20] Vogel BF, Venkateswaran K, Satomi M, Gram L. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Applied and Environmental Microbiology, 2005, 71(11):6689-6697.
    [21] Tryfinopoulou P, Tsakalidou E, Vancanneyt M, Hoste B, Swings J, Nychas GJE. Diversity of Shewanella population in fish Sparus aurata harvested in the Aegean Sea. Journal ofella typhimurium. Molecular Microbiology, 1999, 32(2):275-287.
    [38] Lemaire ON, Honoré FA, Jourlin-Castelli C, Méjean V, Fons M, Iobbi-Nivol C. Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis. Research in Microbiology, 2016, 167(8):630-制伳夷.猼敢r刾浛氳9潝輠捌i赮删Z幘褬頠湌息腮畧茠ML, Li籵縠繗本丠剌聩硵稠轔屘,頠呌祩嬠FB, Wu YD. Distinct biofilm formation regulated by different culture media:implications to electricity generation. Bioelectrochemistry, 2021, 140:107826.
    [40] Zhao N, Dong QL, Nadon BD, Ding XY, Wang XT, Dong YZ, Liu B, Jackson SA, Xu CM. Evolution of homeologou晳造屧e陮譥鐠e陸走敲e鹳乳葩o齮传獩n映杰彯l靹剰佬o彩赤氠荷heat. 似灩瘾歇轥坮噥繳嬼匯乩贾簬攠鄲瘰瘲儰怬删朱1丨嘱頲吩嬺戱401.20, 20(5):242-250.Qu DF, Lu SY, Chen YW, Huang DP, Gong QL, Yi SQ, Han JZ. Comparative genomics analysis of relationship between CRISPR loci and plasmid in Shigella. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5):242-250.(in Chinese)
    [25] Zhu JL, Zhang YW, Deng JM, Jiang HY, Zhuang LM, Ye W, Ma JY, Jiang JY, Feng LF. Diketopiperazines synthesis gene in Shewanella baltica and roles of diketopiperazines and resveratrol in quorum sensing. Journal of Agricultural and Food Chemistry, 2019, 67(43):12013-12025.
    [26] 毕伟伟,冯立芳,石双妮,缪晨豪,朱军莉,田迪英.波罗的海希瓦氏菌和杀鲑气单胞菌致腐性及TorA还原酶差异比较.水产学报, 2020, 44(3):495-504.Bi WW, Feng LF, Shi SN, Miao CH, Zhu JL, Tian DY. Comparison of spoilage potential and TorA protein between Shewanella baltica and Aeromonas salmonicida. Journal of Fisheries of China, 2020, 44(3):495-504.(in Chinese)
    [27] Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 1):81-91.
    [28] 葛彩云,陆海霞,曲道峰,朱军莉,袁冬霞,冯立芳.副溶血性弧菌群中规律成簇间隔短回文重复序列的比较分析.基因组学与应用生物学, 2015, 34(8):1712-1722.Ge CY, Lu HX, Qu DF, Zhu JL, Yuan DX, Feng LF. Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPR) in the genomes of Vibrio parahaemolyticus group.Genomics and Applied Biology, 2015, 34(8):1712-1722.(in Chinese)
    [29] Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6:DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 2017, 34(12):3299-3302.
    [30] Lou XW, Zhai DD, Yang HS. Changes of metabolite profiles of fish models inoculated with Shewanella baltica during spoilage. Food Control, 2021, 123:107697.
    [31] Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 2018, 9:5114.
    [32] Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology, 2008, 6(3):181-186.
    [33] Xue CY, Sashital DG. Mechanisms of type I-E and I-F CRISPR-Cas systems in Enterobacteriaceae. EcoSal Plus, 2019, 8(2):ecosalplus.ESP-8.
    [34] Fagerlund RD, Wilkinson ME, Klykov O, Barendregt A, Pearce FG, Kieper SN, Maxwell HWR Capolupo A, Heck AJR, Krause KL, Bostina M, Scheltema RA, Staals RHJ, Fineran PC. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. PNAS, 2017, 114(26):E5122-E5128.
    [35] 杨兰,杨洋,李伟勋, Obaroakpo JOY,逄晓阳,吕加平.干酪乳杆菌CRISPR基因座分析.中国农业科学, 2019, 52(3):521-529.Yang L, Yang Y, Li WX, Joy O, Pang XY, Lü JP. CRISPR locus analysis of Lactobacillus casei. Scientia Agricultura Sinica, 2019, 52(3):521-529.(in Chinese)
    [36] Murphy J, Mahony J, Ainsworth S, Nauta A, Van Sinderen D. Bacteriophage orphan DNA methyltransferases:insights from their bacterial origin, function, and occurrence. Applied and Environmental Microbiology, 2013, 79(24):7547-7555.
    [37] Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. The genetic basis of tetrathionate respiration in Salmon
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐敏慧,朱昕熠,陈子嫣,朱军莉,曲道峰,冯立芳. 基于比较基因组学分析大黄鱼来源波罗的海希瓦氏菌的防御系统[J]. 微生物学报, 2022, 62(5): 1876-1891

复制
分享
文章指标
  • 点击次数:228
  • 下载次数: 870
  • HTML阅读次数: 879
  • 引用次数: 0
历史
  • 收稿日期:2021-10-17
  • 最后修改日期:2021-12-27
  • 在线发布日期: 2022-04-30
文章二维码