HFD对不同性别SD大鼠肠道菌群及室旁核小胶质细胞激活的影响
作者:
基金项目:

河北省高校基本科研项目(JYT2020020);河北省教育厅青年基金(QN2019080)


Difference in effect of HFD on intestinal microflora, fat metabolism, and brain microglia activation between female and male SD rats
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】通过建立雌、雄性SD (Sprague-Dawley)大鼠模型,研究高脂饮食(high fat diet,HFD)对不同性别大鼠肠道菌群及室旁核(hypothalamic paraventricular nucleus,PVN)区小胶质细胞激活的影响。【方法】选取24只3周龄的SD大鼠,雌雄各半,随机分成雄性对照组(CM)、雌性对照组(CF),雄性高脂组(HM)、雌性高脂组(HF),共4组,每组6只。喂养至10周龄,收集大鼠新鲜粪便并提取细菌总基因组DNA,通过PCR扩增16S rDNA的V3+V4区域,进行高通量测序;采用气相色谱法分析大鼠盲肠内容物中短链脂肪酸(short chain fatty acids,SCFAs)含量;以real-time PCR技术分析PVN区小胶质细胞激活标记物CD11b和炎性细胞因子TNF-α、IL-6的mRNA相对表达水平。【结果】雌、雄高脂组分别与对照组相比,HM组大鼠肠道菌群总数及菌群多样性明显减少(P<0.05),HF组大鼠肠道菌群丰度明显减少(P<0.05)。与CM组相比,HM组大鼠盲肠中乙酸含量显著下降(P<0.05),且PVN区CD11b的mRNA相对表达水平显著升高(P<0.05)。【结论】高脂饮食可改变雌、雄大鼠的肠道菌群,导致其肠道菌群失调。然而,高脂饮食对肠道菌群与脑小胶质细胞的影响在不同性别间存在一定差异。研究表明,高脂饮食所致雄性大鼠肠道菌群的变化可能与脑小胶质细胞激活相关。

    Abstract:

    [Objective] To investigate the effect of high-fat diet (HFD) on intestinal microflora and expression levels of inflammatory cytokines in hypothalamic paraventricular nucleus (PVN) of female and male Sprague-Dawley (SD) rats. [Methods] A total of 24 3-week-old SD rats (12 males) were randomized into 4 groups (6 per group). They were given either control diet (male control group, CM; female control group, CF) or the 60% fat diet (high-fat male group, HM; high-fat female group, HF) until 10 weeks old when the fresh feces were collected and total genomic DNA was extracted. For high-throughput sequencing analysis, we amplified the V3+V4 regions of bacterial 16S rDNA by PCR (polymerase chain reaction). The content of short-chain fatty acids (SCFAs) in the caecal contents of rats was analyzed by gas chromatography. Real-time PCR was performed to analyze the mRNA expression of microglial marker CD11b and inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the PVN. [Results]Reduction in quantity and diversity of intestinal microflora in the HM group (P<0.05) and decrease in abundance of the flora in HF group (P<0.05) were observed compared with those in the respective control groups. The acetic acid content in cecum was lower (P< 0.05), and mRNA expression of CD11b in PVN was higher (P<0.05) in HM group than in CM group. [Conclusion] HFD can alter the intestinal microflora of female and male rats, leading to the flora imbalance. However, the effect of HFD on intestinal microflora and brain microglia is different between female and male rats. The HFD-induced variation of intestinal microflora in male rats may be associated with brain microglia activation.

    参考文献
    [1] Langley MR, Yoon H, Kim HN, Choi CI, Simon W, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochimica et Biophysica Acta Molecular Basis of Disease, 2020, 1866(3):165630.
    [2] 彭利利,丁宁,赵正刚,李芳红,赵子建.高脂饮食对不同性别小鼠肠道菌群的影响.食品工业科技, 2020, 41(1):86-90.Peng LL, Ding N, Zhao ZG, Li FH, Zhao ZJ. Effects of high-fat diet on gut microbiota in male and female mice. Science and Technology of Food Industry, 2020, 41(1):86-90.(in Chinese)
    [3] Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. The Journal of Clinical Investigation, 2006, 116(7):1793-1801.
    [4] Castillo-Ruiz A, Mosley M, George AJ, Mussaji LF, Fullerton EF, Ruszkowski EM, Jacobs AJ, Gewirtz AT, Chassaing B, Forger NG. The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain, Behavior, and Immunity, 2018, 67:218-229.
    [5] 杨莉,葛武鹏,王瑞,梁秀珍,吴小勇,郗梦露,靳欣迪.不同月龄、性别、分娩方式对婴儿肠道菌群差异性分析.营养学报, 2019, 41(4):352-357, 362.Yang L, Ge WP, Wang R, Liang XZ, Wu XY, Xi ML, Jin XD. Influence of age, gender, and delivery mode on the differential analysis of intestinal flora in infants. Acta Nutrimenta Sinica, 2019, 41(4):352-357, 362.(in Chinese)
    [6] Xie RX, Sun Y, Wu JY, Huang SM, Jin G, Guo ZX, Zhang YJ, Liu TY, Liu X, Cao XC, Wang BM, Cao HL. Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood. Frontiers in Immunology, 2018, 9:2608.
    [7] 尹业师,王欣.影响实验小鼠肠道菌群的多因素比较研究.实验动物科学, 2012, 29(4):12-18.Yin YS, Wang X. Comparative study for factors that affect microbiota colonization in experimental mice. Laboratory Animal Science, 2012, 29(4):12-18.(in Chinese)
    [8] Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, Panchakshari RA, Rodig SJ, Kepler TB, Alt FW. Microbial colonization influences early B-lineage development in the gut Lamina propria. Nature, 2013, 501(7465):112-115.
    [9] Hotamisligil GS. Inflammation and metabolic disorders. Nature, 2006, 444(7121):860-867.
    [10] Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, Patel B, Mazzola MA, Liu SR, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, De Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, 7:12015.
    [11] Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Frisoni GB. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 2017, 49:60-68.
    [12] Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, Koga N, Hattori K, Kunugi H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal of Affective Disorders, 2016, 202:254-257.
    [13] Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7):e68322.
    [14] 赵程,于会艳,李薇,时晶,秦斌.帕金森病患者肠道菌群变化的研究.中华神经科杂志, 2018, 51(7):498-503.Zhao C, Yu HY, Li W, Shi J, Qin B. Structural changes of gut microbiota in patients with Parkinson's disease. Chinese Journal of Neurology, 2018, 51(7):498-503.(in Chinese)
    [15] Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23(9):1018-1027.
    [16] Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology, 2017, 35:441-468.
    [17] 柯荔宁,赵小贞,徐剑文,王玮.活化的小胶质细胞在大鼠海马神经元缺氧损伤中的作用.解剖学报, 2009, 40(5):737-742.Ke LN, Zhao XZ, Xu JW, Wang W. Action of activated microglia in hippocampal neurons of rat damage induced by hypoxia. Acta Anatomica Sinica, 2009, 40(5):737-742.(in Chinese)
    [18] Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. Journal of Neurochemistry, 2011, 117(4):735-746.
    [19] Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P,Ødum N, Litman T, Woetmann A. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5:16148.
    [20] Tan J, McKenzie C, Potamitis M, Thorburn AN, MacKay CR, Macia L. The role of short-chain fatty acids in health and disease. Advances in Immunology, 2014, 121:91-119.
    [21] Erny D, Hrabě De Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 2015, 18(7):965-977.
    [22] Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiological Reviews, 2011, 91(2):461-553.
    [23] 刘松珍,张雁,张名位,孙远明,魏振承.肠道短链脂肪酸产生机制及生理功能的研究进展.广东农业科学, 2013, 40(11):99-103.Liu SZ, Zhang Y, Zhang MW, Sun YM, Wei ZC. Research progress on producing mechanism and physiological functions of intestinal short chain fatty acids. Guangdong Agricultural Sciences, 2013, 40(11):99-103.(in Chinese)
    [24] Org E, Mehrabian M, Parks BW, Shipkova P, Liu XQ, Drake TA, Lusis AJ. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7(4):313-322.
    [25] Huang C, Yuan P, Wu J, Huang J. Estrogen regulates excitatory amino acid carrier 1(EAAC1) expression through sphingosine kinase 1(SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience, 2016, 319:9-22.
    [26] Lu Y, Sareddy GR, Wang J, Zhang Q, Tang FL, Pratap UP, Tekmal RR, Vadlamudi RK, Brann DW. Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. The Journal of Neuroscience, 2020, 40(38):7355-7374.
    [27] El-Khatib YA, Sayed RH, Sallam NA, Zaki HF, Khattab MM. 17β-estradiol augments the neuroprotective effect of agomelatine in depressive-and anxiety-like behaviors in ovariectomized rats. Psychopharmacology, 2020, 237(9):2873-2886.
    相似文献
    引证文献
引用本文

王晓岑,罗峥伟,张聪,李靖,毕新月,王天玉,李瑞娟,严黛君,霍艳丽. HFD对不同性别SD大鼠肠道菌群及室旁核小胶质细胞激活的影响[J]. 微生物学报, 2022, 62(5): 1892-1904

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-20
  • 最后修改日期:2021-12-07
  • 在线发布日期: 2022-04-30
文章二维码