滇藏热泉arxA基因型厌氧砷氧化原核微生物多样性及其影响因素
作者:
基金项目:

国家自然科学基金(41877023,41861134028)


Diversity of arsenic-oxidizing prokaryotes containing arxA gene in Yunnan-Tibet hot springs and the influencing factors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究滇藏地区热泉沉积物微生物及arxA基因的多样性及其影响因素。【方法】采用Illumina MiSeq高通量测序技术和统计学的分析方法,针对3个滇藏地热区的22个样点,进行地球化学分析及微生物多样性分析,并分析其与环境因子之间的相关性。【结果】沉积物微生物群落主要门类及其丰度占比为Chloroflexi(21.27%)、Deinococcus-Thermus(17.25%)、Aquificae(13.39%)、Proteobacteria(9.27%)、Acetothermia(8.3%)、Bacteroidetes(4.96%)与Crenarchaeota(4.57%);具有arxA基因的微生物主要门类及其丰度占比分别为Proteobacteria(64.87%)、Bipolaricaulota(9.55%)、Deinococcus-Thermus(6.42%)与Crenarchaeota(4.05%);不同地热区优势种群有所差异,主要受温度、pH值、砷浓度、总溶解固体(TDS)及海拔等因素的影响,Mantel检验呈显著相关性(P<0.001)。【结论】沉积物中具有arxA基因的微生物主要以Proteobacteria为主;不同地热区受到不同环境因子及地理隔离因素的影响,优势群落存在一定地理分布差异;然而,其中具有arxA基因的微生物与pH值无相关性,主要受控于海拔、砷浓度、TDS与空间因素等,体现了此类微生物生理代谢特征的差异性与特殊性。

    Abstract:

    [Objective] To study the diversity of microorganisms in sediments of hot springs in Yunnan and Tibet, the existence of arxA in them, and the influencing factors. [Methods] Illumina MiSeq and statistical analysis were employed for geochemical analysis and microbial diversity analysis of the 22 samples in 3 geothermal areas in Yunnan and Tibet and the relationship between the microorganisms and environmental factors was elucidated. [Results] The dominant phyla in the sediments were Chloroflexi (abundance: 21.27%), Deinococcus-Thermus (abundance: 17.25%), Aquificae (abundance: 13.39%), Proteobacteria (abundance: 9.27%), Acetothermia (abundance: 8.3%), Bacteroidetes (abundance: 4.96%), and Crenarchaeota (abundance: 4.57%). arxA gene-harboring phyla were Proteobacteria (abundance: 64.87%), Bipolaricaulota (abundance: 9.55%), Deinococcus-Thermus (abundance: 6.42%), and Crenarchaeota (abundance: 4.05%). The dominant populations were different among the geothermal areas, which was mainly caused by the temperature, pH, arsenic content, total dissolved solids (TDS), and altitude, as manifested by the significant correlation (P<0.001) between the microorganisms and the environmental factors verified by Mantel test. [Conclusion] arxA gene-harboring microorganisms in the sediments of hot springs were dominated by Proteobacteria and were affected by environmental factors and geographical isolation. They exhibited geographical distribution pattern, as indicated by unique dominant microbial groups in different geothermal areas. In contrast, the arxA gene-containing microbial groups showed no correlation with pH, but were mainly influenced by altitude, arsenic content, TDS, and spatial variables. This suggests the unique physiological characteristics of them among the whole microbial communities.

    参考文献
    [1] Mandal BK, Suzuki KT. Arsenic round the world:a review. Talanta, 2002, 58(1):201-235.
    [2] Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Applied and Environmental Microbiology, 2002, 68(10):4795-4802.
    [3] 杨烨.极端环境砷氧化微生物多样性、活性特征及其对砷释放的影响.中国地质大学博士学位论文, 2017.
    [4] Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5):517-568.
    [5] Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. American Journal of Epidemiology, 1998, 147(7):660-669.
    [6] Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J. The environmental geochemistry of arsenic-an overview. Reviews in Mineraloyg and Geochemistry, 2014, 79(1):1-16.
    [7] Blanes PS, Buchhamer EE, Giménez MC. Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina. Journal of Environmental Science and Health, Part A, 2011, 46(11):1197-1206.
    [8] Lièvremont D, Bertin PN, Lett MC. Arsenic in contaminated waters:biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie, 2009, 91(10):1229-1237.
    [9] Wu Y, Zhou XY, Lei M, Yang J, Ma J, Qiao P, Chen TB. Migration and transformation of arsenic:contamination control and remediation in realgar mining areas. Applied Geochemistry, 2017, 77:44-51.
    [10] Xie ZL, Sun ZG, Zhang H, Zhai J. Contamination assessment of arsenic and heavy metals in a typical abandoned estuary wetland-a case study of the Yellow River Delta Natural Reserve. Environmental Monitoring and Assessment, 2014, 186(11):7211-7232.
    [11] Köhler M, Hofmann K, Völsgen F, Thurow K, Koch A. Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere, 2001, 42(4):425-429.
    [12] Shi GL, Lou LQ, Zhang S, Xia XW, Cai QS. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environmental Science and Pollution Research, 2013, 20(12):8435-8445.
    [13] Zhu YG, Yoshinaga M, Zhao FJ. Earth abides arsenic biotransformation. Annual Review of Earth and Planetary Sciences, 2014, 42(1):443-467.
    [14] 韩永和,王珊珊.微生物耐砷机理及其在砷地球化学循环中的作用.微生物学报, 2016, 56(6):901-910. Han YH, Wang SS. Arsenic resistance mechanisms in microbes and their roles in arsenic geochemical cycling-a review. Acta Microbiologica Sinica, 2016, 56(6):901-910.(in Chinese)
    [15] Oremland RS, Stolz JF. The ecology of arsenic. Science, 2003, 300(5621):939-944.
    [16] Sforna MC, Philippot P, Somogyi A, Zuilen M, Medjoubi K, Schoeppcothenet B, Nitschke W, Visscher PT. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 2014, 7(11):811-815.
    [17] Slyemi D, Bonnefoy V. How prokaryotes deal with arsenic. Environmental Microbiology Reports, 2011, 4(6):571-586.
    [18] Silver S, Phung LT. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 2005, 71(2):599-608.
    [19] Stolz JF, Basu P, Oremland RS. Microbial arsenic metabolism:new twists on an old poison. Microbe, 2011, 5(2):53-59.
    [20] Yamamura S, Amachi S. Microbiology of inorganic arsenic:from metabolism to bioremediation. Journal of Bioscience and Bioengineering, 2014, 118(1):1-9.
    [21] Gihring TM, Banfield JF. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiology Letters, 2001, 204(2):335-340.
    [22] Santini JM, Vanden Hoven RN. Molybdenumcontaining arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. Journal of Bacteriology, 2004, 186(6):1614-1619.
    [23] Hoeft SE. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(3):504-512.
    [24] Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF. Respiratory arsenate reductase as a bidirectional enzyme. Biochemical and Biophysical Research Communications, 2009, 382(2):298-302.
    [25] Zargar K, Hoeft S, Oremland R, Saltikov CW. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. Journal of Bacteriology, 2010, 192(14):3755-3762.
    [26] Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S, Oremland RS, Stolz J, Saltikov CW. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environmental Microbiology, 2012, 14(7):1635-1645.
    [27] Jaime HM, Benjamin SS, Brendon S, Alison B, Laurence M, Shelley M, Michael R, Oremland Ronald S. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environmental Microbiology, 2017, 19(1):130-141.
    [28] Budinoff CR, Hollibaugh JT. Arsenite-dependent photoautotrophy by an Ectothiorhodospira-dominated consortium. The ISME Journal, 2008, 2(3):340-343.
    [29] Fisher JC, Hollibaugh JT. Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California. Applied and Environmental Microbiology, 2008, 74(9):2588-2594.
    [30] Wu G, Huang LQ, Jiang HC, Peng YE, Guo W, Chen ZY, She WY, Guo QH, Dong HL. Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring. Frontiers in Microbiology, 2017, 8:1336.
    [31] Hamamura N, Itai T, Liu Y, Reysenbach Ao, Inskeep WP. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environmental Microbiology Reports, 2015, 6(5):476-482.
    [32] 严克涛,郭清海,罗黎.腾冲热泉中砷的甲基化和巯基化过程.地球科学, 2022, 47(2):622-632. Yan KT, Guo QH, Luo L. Methylation and thiolation of arsenic in Tengchong hot springs. Earth Science, 2022, 47(2):622-632.(in Chinese)
    [33] 马瑞,陈成,李海峰,祝雪禧,宋可馨,袁梦,肖文,杨晓燕,王开玲.中国温泉微生物物种多样性及其酶活性研究进展.微生物学通报, 2020, 47(9):2959-2973. Ma R, Chen C, Li HF, Zhu XX, Song KX, Yuan M, Xiao W, Yang XY, Wang KL. Species diversity and enzymatic activity of microorganisms in Chinese hot springs:a review. Microbiology China, 2020, 47(9):2959-2973.(in Chinese)
    [34] 严克涛,郭清海,刘明亮.西藏搭格架高温热泉中砷的地球化学异常及其存在形态.吉林大学学报:地球科学版, 2019, 49(2):548-558. Yan KT, Guo QH, Liu ML. Geochemical anomalies of arsenic and its speciation in Daggyai geothermal springs, Tibet. Journal of Jilin University:Earth Science Edition, 2019, 49(2):548-558.(in Chinese)
    [35] 赵元艺,聂凤军,侯增谦,李振清,赵希涛,马志邦.西藏搭格架热泉型铯矿床地球化学.矿床地质, 2007, 26(2):163-174. Zhao YY, Nie FJ, Hou ZQ, Li ZQ, Zhao XT, Ma ZB. Geochemistry of Targejia hot spring type cesium deposit in Tibet. Mineral Deposits, 2007, 26(2):163-174.(in Chinese)
    [36] 郭清海,刘明亮,李洁祥.腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因.地球科学, 2017, 42(2):286-297. Guo QH, Liu ML, Li JX. Thioarsenic species in the high-temperature hot springs from the rehai geothermal field (Tengchong) and their geochemical geneses. Earth Science, 2017, 42(2):286-297.(in Chinese)
    [37] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [38] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [39] Meyer-Dombard DR, Shock EL, Amend JP. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology, 2010, 3(3):211-227.
    [40] Chan CS, Chan KG, Tay YL, Chua YH, Goh KM. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Frontiers in Microbiology, 2015, 6:177.
    [41] Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertlé T, BonchOsmolovskaya EA. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Applied and Environmental Microbiology, 2009, 75(1):286-291.
    [42] Hou WG, Wang S, Dong HL, Jiang HC, Briggs BR, Peacock JP, Huang QY, Huang LQ, Wu G, Zhi XY. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One, 2013, 8(1):1-15.
    [43] Song ZQ, Chen JQ, Jiang HC, Zhou EM, Tang SK, Zhi XY, Zhang LX, Zhang CLL, Li WJ. Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles, 2010, 14(3):287-296.
    [44] Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Feng L, Xiang X, Tang SK, Jiang HC, Zhang CL, Dong HL, Li WJ. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environmental Microbiology, 2013, 15(4):1160-1175.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫广盛,马力,王露霞,于志成,杨渐,普布多吉,吴耿,蒋宏忱. 滇藏热泉arxA基因型厌氧砷氧化原核微生物多样性及其影响因素[J]. 微生物学报, 2022, 62(6): 1986-2000

复制
分享
文章指标
  • 点击次数:368
  • 下载次数: 1080
  • HTML阅读次数: 1027
  • 引用次数: 0
历史
  • 收稿日期:2022-03-02
  • 最后修改日期:2022-05-24
  • 在线发布日期: 2022-06-13
文章二维码