安徽省某酸性矿山废水坑湖中细菌群落的垂向分布特征及其影响因素
作者:
基金项目:

国家自然科学基金(U20A20325,41772361)


Vertical spatial distribution of bacteria in a pit lake affected by acid mine drainage in Anhui Province and its influencing factors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究酸性矿山废水(acid mine drainage,AMD)坑湖中细菌群落沿垂向不同水深的分布规律及与环境因子之间的相互作用。【方法】采用16S rRNA基因高通量测序技术,对安徽省某AMD坑湖中6条采样垂线不同水深深度的细菌群落进行调查,同时测定水质理化指标,使用统计学软件分析细菌和地化参数间的联系。【结果】AMD坑湖中水质特征及细菌群落结构出现明显分层现象,自上而下溶解氧降低而pH和多种金属离子浓度增加,微生物群落结构发生变化,多样性和部分物种的丰度增大。细菌群落组成上,表层水域以Proteobacteria (AlphaGammaproteobacteria)和Acidobacteria占据主导地位;中下层水域则由FirmicutesAcidobacteriaActinobacteriaGammaproteobacteriaPatescibacteria等共同主导。统计分析结果表明,TN、DO、ORP、pH、Fe、Mn、Al和Zn与嗜酸细菌丰度显著相关,是细菌空间分布的主要限制因素。【结论】AMD坑湖中水质理化特征和细菌群落分布在垂向空间上存在显著差异,群落的垂向分层特征是由多种环境因子共同作用下的结果。本研究对深入了解AMD的微生物分布规律及对AMD的原位生物修复和治理具有参考价值。

    Abstract:

    [Objective] The purpose of this paper is to explore the distribution of bacterial communities along different water depths in a pit lake affected by acid mine drainage (AMD) and its relationship with environmental factors. [Methods] The 16S rRNA gene high-throughput sequencing technology was used to investigate the bacterial communities along different water depths at 6 sampling sites in the lake. The physicochemical indexes of water quality were measured at the same time. The relationship between bacterial distribution and water physicochemical indexes was analyzed by statistical software. [Results] The physicochemical properties and bacterial distribution showed obvious stratification. Dissolved oxygen (DO) decreased while pH and concentrations of metal ions increased from top to bottom. Meanwhile, the bacterial diversity and the abundance of some species increased from top to bottom. Proteobacteria (Alpha, Gammaproteobacteria) and Acidobacteria were dominated in the surface water, while Firmicutes, Acidobacteria,Actinobacteria, Gammaproteobacteria and Patescibacteria were rich in the middle- and deep-layer water. The total nitrogen (TN), DO, oxidation-reduction potential (ORP), pH, Fe, Mn, Al and Zn were significantly correlated with the abundance of acidophilic bacteria, which were the main factors influencing the spatial distribution of bacteria. [Conclusion] The distribution of bacteria in the pit lake affected by AMD showed an obvious vertical pattern, which was caused by the joint action of various environmental factors. This study has reference value for understanding the microbial distribution in the AMD-influencing pit lake and in situ bioremediation of AMD.

    参考文献
    [1] Naidu G, Ryu S, Thiruvenkatachari R, Choi Y, Jeong S, Vigneswaran S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution, 2019, 247:1110-1124.
    [2] Park I, Tabelin CB, Jeon S, Li XL, Seno K, Ito M, Hiroyoshi N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 2019, 219:588-606.
    [3] Hao CB, Wei PF, Pei LX, Du ZR, Zhang Y, Lu YC, Dong HL. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environmental Pollution, 2017, 223:507-516.
    [4] 彭萍玙,曾伟民.紫金山铜矿酸性矿山废水微生物群落多样性.微生物学通报, 2020, 47(9):2887-2896. Peng YP, Zeng WM. Diversity of microbial community in acid mine drainage from Zijinshan copper mine. Microbiology China, 2020, 47(9):2887-2896.(in Chinese)
    [5] Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R. Microbial community structure across the tree of life in the extreme Río Tinto. The ISME Journal, 2011, 5(1):42-50.
    [6] Wang J, Zhang SY, He C, She ZX, Pan X, Li YY, Shao R, Shi Q, Yue ZB. Source identification and component characterization of dissolved organic matter in an acid mine drainage reservoir. Science of the Total Environment, 2020, 739:139732.
    [7] Sánchez-España J, Yusta I, Ilin A, Graaf C, Sánchez-Andrea I. Microbial geochemistry of the acidic saline pit lake of brunita mine (La unión, SE Spain). Mine Water and the Environment, 2020, 39(3):535-555.
    [8] Bao YP, Guo CL, Wang H, Lu GN, Yang CF, Chen MQ, Dang Z. Fe-and S-metabolizing microbial communities dominate an AMD-contaminated river ecosystem and play important roles in Fe and S cycling. Geomicrobiology Journal, 2017, 34(8):695-705.
    [9] She ZX, Wang J, He C, Pan X, Li YY, Zhang SY, Shi Q, Yue ZB. The stratified distribution of dissolved organic matter in an AMD lake revealed by multi-sample evaluation procedure. Environmental Science&Technology, 2021, 55(12):8401-8409.
    [10] Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, Kuang JL, Chain PS, Huang LN, Shu WS. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. The ISME Journal, 2015, 9(6):1280-1294.
    [11] Aliaga Goltsman DS, Comolli LR, Thomas BC, Banfield JF. Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. The ISME Journal, 2015, 9(4):1014-1023.
    [12] Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 2003, 44(2):139-152.
    [13] Chen LX, Huang LN. Mendez-Garcia C, Kuang JL, Hua ZS, Liu J, Shu WS. Microbial communities, processes and functions in acid mine drainage ecosystems. Current Opinion in Microbiology, 2016, 38:150-158.
    [14] Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 2015, 6:475.
    [15] Villegas-Plazas M, Sanabria J, Junca H. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. Journal of Environmental Management, 2019, 251:109581.
    [16] Bernardelli CE, Maza SN, Lecomte KL, Collo G, Astini RA, Donati ER. Acidophilic microorganisms enhancing geochemical dynamics in an acidic drainage system, Amarillo River in La Rioja, Argentina. Chemosphere, 2021, 263:128098.
    [17] Mesa V, Gallego JLR, González-Gil R, Lauga B, Sánchez J, Méndez-García C, Peláez AI. Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Frontiers in Microbiology, 2017, 8:1756.
    [18] Johnson DB, Kanao T, Hedrich S. Redox transformations of iron at extremely low pH:fundamental and applied aspects. Frontiers in Microbiology, 2012, 3:96.
    [19] Liu J, Hua ZS, Chen LX, Kuang JL, Li SJ, Shu WS, Huang LN. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Applied and Environmental Microbiology, 2014, 80(12):3677-3686.
    [20] He HR, Pan BZ, Yu K, Zheng X, Wu Y, Xiao L, Zhao GN, Zhu PH. Determinants of bacterioplankton structures in the typically turbid Weihe River and its clear tributaries from the northern foot of the Qinling Mountains. Ecological Indicators, 2021, 121:107168.
    [21] Zhang QQ, Jian SL, Li KM, Wu ZB, Guan HT, Hao JW, Wang SY, Lin YY, Wang GJ, Li AH. Community structure of bacterioplankton and its relationship with environmental factors in the upper reaches of the Heihe River in Qinghai Plateau. Environmental Microbiology, 2021, 23(2):1210-1221.
    [22] Santini TC, Raudsepp M, Hamilton J, Nunn J. Extreme geochemical conditions and dispersal limitation retard primary succession of microbial communities in gold tailings. Frontiers in Microbiology, 2018, 9:2785.
    [23] Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. The ISME Journal, 2013, 7(5):1038-1050.
    [24] Zelaya AJ, Parker AE, Bailey KL, Zhang P, Van Nostrand J, Ning DL, Elias DA, Zhou JZ, Hazen TC, Arkin AP, Fields MW. High spatiotemporal variability of bacterial diversity over short time scales with unique hydrochemical associations within a shallow aquifer. Water Research, 2019, 164:114917.
    [25] Zhang KP, Delgado-Baquerizo M, Zhu YG, Chu HY. Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems, 2020, 5(3):e00783-19.
    [26] Santofimia E, González-Toril E, López-Pamo E, Gomariz M, Amils R, Aguilera A. Microbial diversity and its relationship to physicochemical characteristics of the water in two extreme acidic pit lakes from the Iberian pyrite belt (SW Spain). PLoS One, 2013, 8(6):e66746.
    [27] Grettenberger CL, Mccauley Rench RL, Gruen DS, Mills DB, Carney C, Brainard J, Hamasaki H, Ramirez R, Watanabe Y, Amaral-Zettler LA, Ohmoto H, Macalady JL. Microbial population structure in a stratified, acidic pit lake in the Iberian Pyrite Belt. Geomicrobiology Journal, 2020, 37(7):623-634.
    [28] 尹华群,刘征华,刘学端.冶金微生物的铁硫代谢多样性及其与矿物的相互作用.微生物学报, 2018, 58(4):560-572. Yin HQ, Liu ZH, Liu XD. Diversity of iron and sulfur metabolism in bioleaching microorganisms and their interaction with minerals. Acta Microbiologica Sinica, 2018, 58(4):560-572.(in Chinese)
    [29] Ying H, Feng XH, Zhu MQ, Lanson B, Liu F, Wang XM. Formation and transformation of schwertmannite through direct Fe3+hydrolysis under various geochemical conditions. Environmental Science:Nano, 2020, 7(8):2385-2398.
    [30] Coupland K, Johnson DB. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiology Letters, 2008, 279(1):30-35.
    [31] Bartsch S, Gensch A, Stephan S, Doetsch A, Gescher J. Metallibacterium scheffleri:genomic data reveal a versatile metabolism. FEMS Microbiology Ecology, 2017, 93(3).
    [32] Falagán C, Sánchez-España J, Johnson DB. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiology Ecology, 2014, 87(1):231-243.
    [33] 张思宇,岳正波,佘智祥,潘鑫,邵锐,史权,何晨,李运运,王进.某酸性矿山排水中溶解性有机物的特征分析.中国环境科学, 2020, 40(8):3401-3407. Zhang SY, Yue ZB, She ZX, Pan X, Shao R, Shi Q, He C, Li YY, Wang J. Characteristics analysis of dissolved organic matter in the acid mine drainage. China Environmental Science, 2020, 40(8):3401-3407.(in Chinese)
    [34] Sánchez-España J, Boehrer B, Yusta I. Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction. Environmental Science&Technology, 2014, 48(8):4273-4281.
    [35] Spiteri C, Cappellen PV, Regnier P. Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochimica et Cosmochimica Acta, 2008, 72(14):3431-3445.
    [36] 梁宗林,秦亚玲,王沛,王保军,刘征华,尹华群,刘双江,姜成英.云南省蒙自酸性矿山排水微生物群落结构和功能.生物工程学报, 2019, 35(11):2035-2049. Liang ZL, Qin YL, Wang P, Wang BJ, Liu ZH, Yin HQ, Liu SJ, Jiang CY. Microbial community structure and function in acid mine drainage from Mengzi, Yunnan Province. Chinese Journal of Biotechnology, 2019, 35(11):2035-2049.(in Chinese)
    [37] He JW, Li WX, Liu J, Chen S, Frost RL. Investigation of mineralogical and bacteria diversity in Nanxi River affected by acid mine drainage from the closed coal mine:implications for characterizing natural attenuation process. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 217:263-270.
    [38] Wang XM, Jiang HK, Fang D, Liang JR, Zhou LX. A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization. Water Research, 2019, 151:515-522.
    [39] Chen HY, Xiao TF, Ning ZP, Li Q, Xiao EZ, Liu YZ, Xiao QX, Lan XL, Ma L, Lu FH. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system:performance and response of microbial communities to low pH and elevated Fe. Bioresource Technology, 2020, 317:123985.
    [40] Johnson DB, Hallberg KB, Hedrich S. Uncovering a microbial Enigma:isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens". Applied and Environmental Microbiology, 2014, 80(2):672-680.
    [41] 曹子敏, Joseph Frazer Banda,裴理鑫,卫朋飞,辛瑞瑞,董慧渊,郝春博.安徽某铁矿不同矿山废水库中微生物群落结构特征.微生物学报, 2019, 59(6):1076-1088. Cao ZM, Banda J, Pei LX, Wei PF, Xin RR, Dong HY, Hao CB. Microbial community structure characteristics in different mine drainage lakes of an iron mine in Anhui Province. Acta Microbiologica Sinica, 2019, 59(6):1076-1088.(in Chinese)
    [42] Sheng YZ, Bibby K, Grettenberger C, Kaley B, Macalady JL, Wang GC, Burgos WD. Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities. Applied and Environmental Microbiology, 2016, 82(12):3611-3621.
    [43] Baker-Austin C, Dopson M. Life in acid:pH homeostasis in acidophiles. Trends in Microbiology, 2007, 15(4):165-171.
    [44] Chen XM, Zhao Y, Zhao XY, Wu JQ, Zhu LJ, Zhang X, Wei ZM, Liu Y, He PP. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting:sensitive, resistant and actor. Journal of Hazardous Materials, 2020, 398:122858.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘鑫,佘智祥,邵锐,杨程,王绍平,王广成,岳正波,王进. 安徽省某酸性矿山废水坑湖中细菌群落的垂向分布特征及其影响因素[J]. 微生物学报, 2022, 62(6): 2090-2103

复制
分享
文章指标
  • 点击次数:235
  • 下载次数: 1038
  • HTML阅读次数: 1628
  • 引用次数: 0
历史
  • 收稿日期:2021-08-07
  • 最后修改日期:2021-10-19
  • 在线发布日期: 2022-06-13
文章二维码