山西阳泉老窑水硫酸盐还原菌的分离鉴定及其还原功能驯化
作者:
基金项目:

阳泉市水利局省级水利发展资金(2019046477);国家自然科学基金(42007306)


Isolation and identification of sulfate-reducing bacteria in goaf water in Yangquan of Shanxi Province and domestication for the reduction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】含硫煤矿开采后,地表水/地下水回流至采空区形成酸性老窑水,含有高浓度重金属离子和硫酸盐,严重危害生态系统健康。利用微生物自身生长处理老窑水具有成本低、环境友好等特点,具有良好的应用前景。目前利用的硫酸盐还原菌大多只在适宜温度和中性pH条件下具有较高活性,在北方低温和酸性条件下难以发挥作用。【目的】本研究旨在从山西阳泉山底河流域的老窑水环境中分离硫酸盐还原菌,并调节温度和pH进行驯化,从而得到高效耐低温耐酸菌株,为北方老窑水微生物治理提供可用菌种资源。【方法】对山底河流域典型老窑水样品中的微生物进行富集培养,并筛选硫酸盐还原菌。通过革兰氏染色、扫描电镜对菌株形貌特性进行表征,利用16S rRNA基因序列比对进行菌种鉴定,探究其生长特性和硫酸盐还原性能。在此基础上降低温度和pH,对高效还原硫酸盐菌株进行驯化,探讨其在北方老窑水污染治理中的应用潜力。【结果】本研究筛选得到2株硫酸盐还原菌,命名为YQ-1和YQ-2,分别属于革兰氏阴性瘤胃解蛋白质菌属(Proteiniclasticum)和脱硫弧菌属(Desulfovibrio)。在30℃、pH 7.5条件下,YQ-1和YQ-2对1 100 mg/L硫酸根的还原效率分别为96.75%和75.48%。选取高效菌株YQ-1进行定向驯化,该菌株经低温驯化后,在15℃、pH 7.5条件下对硫酸根的去除率为91.49%,比驯化前提高了85.69%;进一步进行低pH驯化后,在15℃、pH 4.5条件下对硫酸根的去除率为37.21%,比驯化前提高了34.30%。【结论】通过驯化培养提高了硫酸盐还原菌YQ-1对低温和低pH环境的耐受性,同时也提高了其在低温和低pH条件下对硫酸根的还原效率,为北方老窑水治理提供了菌种资源和理论依据。

    Abstract:

    [Background] Surface water/ground water flows back to the goaf of sulfur-containing coal mine, forming the acidic goaf water. The water, with high salinity and sulfate content, threatens ecosystem health. Microorganisms, which feature low cost and environmental protection, has promising prospect of application in the treatment of goaf water. However, the currently available sulfate-reducing bacteria (SRB) are only highly active under suitable temperature and neutral pH, and are intolerant to low temperature and acidic conditions in northern China. [Objective] To isolate SRB from goaf water in Shandi River Basin of Yangquan, Shanxi, and to domesticate them so that they can tolerate the low temperature and acidic condition and be used for the treatment of goaf water in northern China. [Methods] Microorganisms in goaf water sample from Shandi River Basin were enriched and SRB were isolated. Then the SRB were characterized by Gram staining and scanning electron microscopy and identified based on 16S rRNA sequence alignment. Their growth characteristics and sulfate-reducing capacity were also investigated. On this basis, temperature and pH were lowered to domesticate the efficient SRB, thereby exploring their potential in the treatment of goaf water. [Results] Two strains of SRB, YQ-1 and YQ-2, were isolated, belonging to the Gram-negative Proteiniclasticum and Desulfovibrio, respectively. At 30 ℃ and pH 7.5, YQ-1 and YQ-2 reduced 96.75% and 75.48% of the 1 100 mg/L sulfate, respectively. The highly efficient strain YQ-1 was selected for domestication at low temperature and pH. The sulfate removal rate of the strain was 91.49% at 15 ℃ and pH 7.5 after low-temperature domestication, 85.69% higher than that before domestication. The removal rate was up to 37.21% at 15 ℃ and pH 4.5 after low-pH domestication, which was 34.30% higher than that before domestication. [Conclusion] The tolerance of YQ-1 to low temperature and low pH was improved, and the efficiency of sulfate reduction was also enhanced after domestication. This work provided strain resources and theoretical basis for the treatment of goaf water in northern China.

    参考文献
    [1] Jiang CF, Gao XB, Hou BJ, Zhang ST, Zhang JY, Li CC, Wang W. Occurrence and environmental impact of coal mine goaf water in karst areas in China. Journal of Cleaner Production, 2020, 275:123813.
    [2] Gui HR, Qiu HL, Qiu WZ, Tong SJ, Zhang HZ. Overview of goaf water hazards control in China coalmines. Arabian Journal of Geosciences, 2018, 11(3):1-10.
    [3] Luo B, Sun YJ, Xu ZM, Chen G, Zhang L, Lu WN, Zhao XM, Yuan HQ. Damage characteristics and mechanism of the 2017 groundwater inrush accident that occurred at Dongyu Coalmine in Taiyuan, Shanxi, China. Water, 2021, 13(3):368-378.
    [4] 常彩叶.浅谈中国煤矿水文地质类型划分与特征.西部探矿工程, 2021, 33(11):132-133. Chang CY. A brief discussion on the classification and characteristics of coal mine hydrogeology in China. West-China Exploration Engineering, 2021, 33(11):132-133.(in Chinese)
    [5] Kushkevych I, Hýžová B, Vítězová M, Rittmann SKMR. Microscopic methods for identification of sulfate-reducing bacteria from various habitats. International Journal of Molecular Sciences, 2021, 22(8):4007-4034.
    [6] Willis G, Nancucheo I, Hedrich S, Giaveno A, Donati E, Johnson DB. Enrichment and isolation of acid-tolerant sulfate-reducing microorganisms in the anoxic, acidic hot spring sediments from Copahue volcano, Argentina. FEMS Microbiology Ecology, 2019, 95(12):fiz175.
    [7] Peña-Ocaña BA, Ovando-Ovando CI, Puente-Sánchez F, Tamames J, Servín-Garcidueñas LE, González-Toril E, Gutiérrez-Sarmiento W, Jasso-Chávez R, Ruíz-Valdiviezo VM. Metagenomic and metabolic analyses of poly-extreme microbiome from an active crater volcano lake. Environmental Research, 2022, 203:111862.
    [8] Zhou JM, Xing JM. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments. Water Research, 2021, 201:117354.
    [9] Wang F, Peng SQ, Fan L, Li Y. Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting. Alexandria Engineering Journal, 2022, 61(12):9993-10005.
    [10] Song XY, Zeng JN, Zhou Y, Chen QZ, Yang HS, Shou L, Liao YB, Huang W, Du P, Liu Q. Partial function prediction of sulfate-reducing bacterial community from the rhizospheres of two typical coastal wetland plants in China. Journal of Oceanology and Limnology, 2021, 39(1):185-197.
    [11] Li X, Lan SM, Zhu ZP, Zhang C, Zeng GM, Liu YG, Cao WC, Song B, Yang H, Wang SF, Wu SH. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage:a review. Ecotoxicology and Environmental Safety, 2018, 158:162-170.
    [12] Dhar V, Singh R. Impact of partially submersed iron scraps in simultaneously sulfate and nitrate removal using sulfate-reducing bacteria. Environmental Technology&Innovation, 2021, 24:101823.
    [13] Kushkevych I, Kovářová A, Dordevic D, Gaine J, Kollar P, Vítězová M, Rittmann SKMR. Distribution of sulfate-reducing bacteria in the environment:cryopreservation techniques and their potential storage application. Processes, 2021, 9(10):1843-1864.
    [14] Van Den Brand T, Snip L, Palmen L, Weij P, Sipma J, Van Loosdrecht M. Sulfate reducing bacteria applied to domestic wastewater. Water Practice&Technology, 2018, 13(3):542-554.
    [15] Lu Z, Imlay JA. When anaerobes encounter oxygen:mechanisms of oxygen toxicity, tolerance and defence. Nature Reviews Microbiology, 2021, 19(12):774-785.
    [16] Ayangbenro AS, Olanrewaju OS, Babalola OO. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology, 2018, 9:1986.
    [17] Wang ZL, Xu YX, Zhang ZX, Zhang YB. Review:acid mine drainage (AMD) in abandoned coal mines of Shanxi, China. Water, 2021, 13(1):8-29.
    [18] 杨春璐,闫鹏举,魏宠,史荣久,韩斯琴,张颖,万传明.一株源自渤海海域高温酸败油井采出水的硫酸盐还原菌筛选与活性抑制.微生物学通报, 2020, 47(5):1332-1341. Yang CL, Yan PJ, Wei C, Shi RJ, Han SQ, Zhang Y, Wan CM. Isolation and activity inhibition of a sulfate-reducing bacterium in produced water from an offshore high-temperature soured oilfield in the Bohai Sea area, China. Microbiology China, 2020, 47(5):1332-1341.(in Chinese)
    [19] Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B. Desulfosporosinus acidiphilus sp. nov.:a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles, 2010, 14(3):305-312.
    [20] 刘强.阳泉市山底河流域酸性老窑水形成机制及其影响研究.太原理工大学硕士学位论文, 2018.
    [21] 国家环境保护总局.地表水环境质量标准, 2002.
    [22] Virpiranta H, Sotaniemi V, Leiviskä T, Taskila S, Rämö J, Johnson DB, Tanskanen J. Continuous removal of sulfate and metals from acidic mining-impacted waters at low temperature using a sulfate-reducing bacterial consortium. Chemical Engineering Journal, 2022, 427:132050.
    [23] Bao YX, Liu JW, Zhang X, Lei P, Qiu JG, He J, Li N. Sinanaerobacter chloroacetimidivorans gen. nov., sp. nov., an obligate anaerobic bacterium isolated from anaerobic sludge. Antonie Van Leeuwenhoek, 2021, 114(10):1609-1617.
    [24] Pérez-Díaz MI, Zárate-Segura P, Bermeo-Fernández LA, Nirmalkar K, Bastida-González F, García-Mena J, Jan-Roblero J, Guerrero-Barajas C. Bacterial consortium from hydrothermal vent sediments presents electrogenic activity achieved under sulfate reducing conditions in a microbial fuel cell. Journal of Environmental Health Science and Engineering, 2020, 18(2):1189-1205.
    [25] Hwang SK, Jho EH. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. The Science of the Total Environment, 2018, 635:1308-1316.
    [26] 戴祥昕,桂梦瑶,杜俊逸,吴代赦.硫酸盐还原菌包覆矿石控制酸性废水排放及碳源的优选研究.地球与环境, 2021, 49(1):73-81. Dai XX, Gui MY, Du JY, Wu DS. Sulphate-reducing bacteria covered mine refuse to control acid mine drainage and the optimization of relevant carbon sources. Earth and Environment, 2021, 49(1):73-81.(in Chinese)
    [27] Dev S, Galey M, Chun CL, Novotny C, Ghosh T, Aggarwal S. Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia-a solution toward acid mine drainage treatment in cold regions. Environmental Science Processes&Impacts, 2021, 23(12):2007-2020.
    [28] 刘辰,周磊,高洁,张厚军.混合硫酸盐还原菌的筛选及其生理特性研究.铀矿冶, 2017, 36(3):217-221. Liu C, Zhou L, Gao J, Zhang HJ. The study on screening and physiological characteristics of mixed sulfate reducing bacteria. Uranium Mining and Metallurgy, 2017, 36(3):217-221.(in Chinese)
    [29] Liu JW, Bao YX, Zhang X, Zhao SY, Qiu JG, Li N, He J. Anaerobic biodegradation and detoxification of chloroacetamide herbicides by a novel Proteiniclasticum sediminis BAD-10T. Environmental Research, 2022, 209:112859.
    [30] Leavitt WD, Venceslau SS, Waldbauer J, Smith DA, Pereira IAC, Bradley AS. Proteomic and isotopic response of Desulfovibrio vulgaris to DsrC perturbation. Frontiers in Microbiology, 2019, 10:658.
    [31] Phyo AK, Jia Y, Tan Q, Sun H, Liu Y, Dong B, Ruan R. Competitive growth of sulfate-reducing bacteria with bioleaching acidophiles for bioremediation of heap bioleaching residue. International Journal of Environmental Research and Public Health, 2020, 17(8):2715-2729.
    [32] 董艳荣,狄军贞,胡海洋,周君厚,阮浈,孙雪莹,赵中茜.硫酸盐还原菌分离及其处理煤矿酸性废水工艺的实验研究.水资源与水工程学报, 2019, 30(2):25-30. Dong YR, Di JZ, Hu HY, Zhou JH, Ruan Z, Sun XY, Zhao ZQ. Experimental study in isolation of sulfate reducing bacteria and treatment of acid mine drainage process. Journal of Water Resources and Water Engineering, 2019, 30(2):25-30.(in Chinese)
    [33] 吴文菲,刘波,李红军,李松,陈泽智. pH、盐度对微生物还原硫酸盐的影响研究.环境工程学报, 2011, 5(11):2527-2531. Wu WF, Liu B, Li HJ, Li S, Chen ZZ. Effect of pH and salinity on sulfate reduction by microorganism. Chinese Journal of Environmental Engineering, 2011, 5(11):2527-2531.(in Chinese)
    [34] Virpiranta H, Taskila S, Leiviskä T, Rämö J, Tanskanen J. Development of a process for microbial sulfate reduction in cold mining waters-cold acclimation of bacterial consortia from an Arctic mining district. Environmental Pollution, 2019, 252(Pt A):281-288.
    [35] Putri AYP, Widjajanti H, Handayani HE. Isolation and potency test of sulfate reducing bacteria (SRB) as bioremediation agent for ex-coal mining soil. Sriwijaya Journal of Environment, 2020, 5(1):23-29.
    [36] 夏凯,朱军莉,梁新乐.醋酸菌耐酸机理及其群体感应研究新进展.微生物学报, 2017, 57(3):321-332. Xia K, Zhu JL, Liang L. Advances in acid resistant mechanism of acetic acid bacteria and related quorum sensing system. Acta Microbiologica Sinica, 2017, 57(3):321-332.(in Chinese)
    [37] Hao T, Xiang P, Mackey HR, Chi K, Lu H, Chui H, Van Loosdrecht MC, Chen G. A review of biological sulfate conversions in wastewater treatment. Water Research, 2014, 65:1-21.
    [38] Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of industrial microbes. Current Biology, 2019, 29(10):R381-R393.
    [39] Eydallin G, Ryall B, Maharjan R, Ferenci T. The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environmental Microbiology, 2014, 16(3):813-828.
    [40] 段黎,皮科武.硫酸盐还原菌的驯化及硫酸盐降解动力学研究.湖北工业大学学报, 2016, 31(2):116-120. Duan L, Pi KW. Study on the domestication of sulphate reducing bacteria and the kinetics of sulphate degradation. Journal of Hubei University of Technology, 2016, 31(2):116-120.(in Chinese)
    [41] 孔亚楠,张文羿,白梅,乌云,赵亚荣,张和平.益生菌Lactobacillus plantarum P-8长期连续传代1000代过程中稳定性的研究.中国乳品工业, 2013, 41(4):15-18. Kong YN, Zhang WY, Bai M, Wu Y, Zhao YR, Zhang HP. Stability of the probiotic Lactobacillus plantarum P-8 after long-term continuous subculturing for 1000 generations. China Dairy Industry, 2013, 41(4):15-18.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈秀云,冯杰,王红梅,刘邓,窦艳芳,张江华,马丽媛. 山西阳泉老窑水硫酸盐还原菌的分离鉴定及其还原功能驯化[J]. 微生物学报, 2022, 62(6): 2104-2118

复制
分享
文章指标
  • 点击次数:475
  • 下载次数: 1053
  • HTML阅读次数: 1140
  • 引用次数: 0
历史
  • 收稿日期:2022-04-16
  • 最后修改日期:2022-05-21
  • 在线发布日期: 2022-06-13
文章二维码