微生物介导铁还原耦合氨氧化过程的研究进展
作者:
基金项目:

国家自然科学基金(42077018,41907139)


Microbes-mediated coupling of Fe(Ⅲ) reduction and ammonium oxidation
Author:
  • CHENG Kuan

    CHENG Kuan

    Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Han

    LI Han

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DU Yanhong

    DU Yanhong

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DONG Haibo

    DONG Haibo

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Tongxu

    LIU Tongxu

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    铁的氧化还原过程可以显著影响环境中次生矿物的形成、养分转化和污染物的归趋。作为厌氧环境中新发现的铁循环过程,铁氨氧化过程对自然和农田生态系统中氨氧化的贡献可达10%以上,对环境保护和农业生产具有深远的意义。文章主要从发展历程、相关微生物、反应机制、影响因素和环境意义等方面综述了铁氨氧化过程。在此过程中,Acidimicrobiaceae sp.A6和异化铁还原菌(DIRB)是驱动铁氨氧化过程的关键微生物,环境pH、Fe (Ⅲ)的浓度和种类、碳源和Mn ()Ⅳ氧化物是重要环境影响因子。铁氨氧化过程可能由微生物独立驱动完成,也可能由微生物-化学耦合作用驱动完成。从环境意义看,铁氨氧化过程对减少温室气体排放、固定重金属等方面具有积极影响,但也会导致氮素流失等负面环境效应。后续的研究可以从纯化微生物、拓展研究方法等方面着手,进一步提升铁氨氧化过程的研究广度和深度。

    Abstract:

    The redox processes of iron significantly influence secondary mineral formation, nutrient transformation, and the fate of contaminants. As a novel process of global iron cycle first discovered in anaerobic environment, microbes-mediated coupling of ammonium oxidation and Fe(Ⅲ) reduction (Feammox) accounts for up to 10% of ammonium oxidation in natural and agricultural ecosystems. Thus, it is of great significance for environmental protection and agricultural production. This review summarized the research on microbial Feammox in recent years, including its research history, related microbes, underlying mechanisms, influencing factors, and environmental significances. In Feammox, Acidimicrobiaceae sp. A6 and dissimilatory Fe-reducing bacteria (DIRB) are potential functional organisms, and pH, Fe(Ⅲ) concentration and speciation, carbon sources, and Mn(Ⅳ) oxides are the main environmental factors. Feammox might be driven by biological process alone, or by the biological-chemical coupling processes. As for the environmental significances, Feammox can reduce the greenhouse gas emission and influence heavy metal transformation, but it causes alternative N loss. Further investigations could focus on the cultivation of related microorganisms and the development of new research methods to further disclose the Feammox mechanism.

    参考文献
    [1] Kappler A. Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry, 2005, 59(1):85-108.
    [2] Peiffer S, Kappler A, Haderlein SB, Schmidt C, Byrne JM, Kleindienst S, Vogt C, Richnow HH, Obst M, Angenent LT, Bryce C, McCammon C, Planer-Friedrich B. A biogeochemical-hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 2021, 14(5):264-272.
    [3] Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12(12):797-808.
    [4] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [5] Liu TX, Chen DD, Li XM, Li FB. Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions. FEMS Microbiology Ecology, 2019, 95(4):fiz030.
    [6] Picardal F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx-. Frontiers in Microbiology, 2012, 3:112.
    [7] Yang WH, Weber KA, Silver WL. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nature Geoscience, 2012, 5(8):538-541.
    [8] 李良谟, 潘映华, 伍期途, 周秀如, 李振高. 无定形氧化铁作为嫌气下NH4+氧化时电子受体的研究. 土壤学报, 1988, 25(2):184-190. Li LM, Pan YH, Wu QT, Zhou XR, Li ZG. Investigation on amorphous ferric oxide acting as an electron acceptor in the oxidation of NH4+ under anaerobic condition. Acta Pedologica Sinica, 1988, 25(2):184-190. (in Chinese)
    [9] Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology and Biochemistry, 2005, 37(12):2323-2328.
    [10] Sawayama S. Possibility of anoxic ferric ammonium oxidation. Journal of Bioscience and Bioengineering, 2006, 101(1):70-72.
    [11] Shrestha J, Rich JJ, Ehrenfeld JG, Jaffe PR. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils. Soil Science, 2009, 174(3):156-164.
    [12] Ding LJ, An XL, Li S, Zhang GL, Zhu YG. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environmental Science & Technology, 2014, 48(18):10641-10647.
    [13] Li XF, Hou LJ, Liu M, Zheng YL, Yin GY, Lin XB, Cheng L, Li Y, Hu XT. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science & Technology, 2015, 49(19):11560-11568.
    [14] Guan QS, Cao WZ, Wang M, Wu GJ, Wang FF, Jiang C, Tao YR, Gao Y. Nitrogen loss through anaerobic ammonium oxidation coupled with iron reduction in a mangrove wetland. European Journal of Soil Science, 2018, 69(4):732-741.
    [15] Rios-Del Toro EE, Valenzuela EI, López-Lozano NE, Cortés-Martínez MG, Sánchez-Rodríguez MA, Calvario-Martínez O, Sánchez-Carrillo S, Cervantes FJ. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation, 2018, 29(5):429-442.
    [16] Huang S, Jaffé PR. Isolation and characterization of an ammonium-oxidizing iron reducer:Acidimicrobiaceae sp. A6. PLoS One, 2018, 13(4):e0194007.
    [17] Zhou GW, Yang XR, Li H, Marshall CW, Zheng BX, Yan Y, Su JQ, Zhu YG. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environmental Science & Technology, 2016, 50(17):9298-9307.
    [18] Li H, Su JQ, Yang XR, Zhou GW, Lassen SB, Zhu YG. RNA stable isotope probing of potential feammox population in paddy soil. Environmental Science & Technology, 2019, 53(9):4841-4849.
    [19] Huang S, Jaffé PR. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences, 2015, 12(3):769-779.
    [20] Yao ZB, Wang F, Wang CL, Xu HC, Jiang HL. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake. Environmental Science and Pollution Research International, 2019, 26(15):15084-15094.
    [21] Qin YB, Chen ZH, Ding BJ, Li ZK. Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China. Environmental Pollution, 2020, 261:114220.
    [22] Huang S, Chen C, Peng XC, Jaffé PR. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments. Soil Biology and Biochemistry, 2016, 98:148-158.
    [23] Ruiz-Urigüen M, Shuai WT, Jaffé PR. Electrode colonization by the Feammox bacterium Acidimicrobiaceae sp. strain A6. Applied and Environmental Microbiology, 2018, 84(24):1-18.
    [24] Ding BJ, Li ZK, Qin YB. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone. Environmental Pollution, 2017, 231:379-386.
    [25] Qin YB, Ding BJ, Li ZK, Chen S. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China. Environmental Pollution, 2019, 252:119-127.
    [26] Shuai WT, Jaffé PR. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms. Science of the Total Environment, 2019, 648:984-992.
    [27] Yao ZB, Yang L, Song N, Wang CH, Jiang HL. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environmental Science and Pollution Research International, 2020, 27(21):25899-25907.
    [28] Ding BJ, Luo WQ, Qin YB, Li ZK. Effects of the addition of nitrogen and phosphorus on anaerobic ammonium oxidation coupled with iron reduction (Feammox) in the farmland soils. Science of the Total Environment, 2020, 737:139849.
    [29] Ding BJ, Qin YB, Luo WQ, Li ZK. Spatial and seasonal distributions of Feammox from ecosystem habitats in the Wanshan region of the Taihu watershed, China. Chemosphere, 2020, 239:124742.
    [30] Van De Graaf AA, De Bruijn P, Robertson LA, Jetten MSM, Kuenen JG. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology, 1996, 142(8):2187-2196.
    [31] Burton SA, Prosser JI. Autotrophic ammonia oxidation at low pH through urea hydrolysis. Applied and Environmental Microbiology, 2001, 67(7):2952-2957.
    [32] Tominski C, Lösekann-Behrens T, Ruecker A, Haobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [51] Wang XN, Sun GX, Zhu YG. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. Journal of Soils and Sediments, 2017, 17(12):2831-2846.
    [52] Yi B, Wang HH, Zhang QC, Jin H, Abbas T, Li Y, Liu YM, Di HJ. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China. Science of the Total Environment, 2019, 652:1139-1147.
    [53] Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, Swanner ED. An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology, 2021, 19(6):360-374.
    [54] Luther GW III, Sundby B, Lewis BL, Brendel PJ, Silverberg N. Interactions of manganese with the nitrogen cycle:alternative pathways to dinitrogen. Geochimica et Cosmochimica Acta, 1997, 61(19):4043-4052.
    [55] Guan QS, Zhang YL, Tao YR, Chang CT, Cao WZ. Graphene functions as a conductive bridge to promote anaerobic ammonium oxidation coupled with iron reduction in mangrove sediment slurries. Geoderma, 2019, 352:181-184.
    [56] Jia R, Li LN, Qu D, Mi NN. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar. Environmental Science and Pollution Research International, 2018, 25(1):91-103.
    [57] Thamdrup B, Dalsgaard T. The fate of ammonium in anoxic manganese oxide-rich marine sediment. Geochimica et Cosmochimica Acta, 2000, 64(24):4157-4164.
    [58] Lin H, Taillefert M. Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments. Geochimica et Cosmochimica Acta, 2014, 133:17-33.
    [59] Luther GW, Thibault De Chanvalon A, Oldham VE, Estes ER, Tebo BM, Madison AS. Reduction of manganese oxides:thermodynamic, kinetic and mechanistic considerations for one- versus two-electron transfer steps. Aquatic Geochemistry, 2018, 24(4):257-277.
    [60] Chen S, Ding BJ, Qin YB, Chen ZH, Li ZK. Nitrogen loss through anaerobic ammonium oxidation mediated by Mn(IV)-oxide reduction from agricultural drainage ditches into Jiuli River, Taihu Lake Basin. Science of the Total Environment, 2020, 700:134512.
    [61] Yu HY, Li FB, Liu CS, Huang W, Liu TX, Yu WM. Iron redox cycling coupled to transformation and immobilization of heavy metals:implications for paddy rice safety in the red soil of South China. Advances in Agronomy, 2016, 137:279-317.
    [62] Islam FS, Pederick RL, Gault AG, Adams 呌之弬 P杯艬杹a 剄呁攬 C坨塡彲畮牯c腫欠赊M眬爠镌癬聯她畤嬠佊遒朮删硉穮轴履ra坣塴孩扯ns between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Applied and Environmental Microbiology, 2005, 71(12):8642-8648.
    [63] Xiu W, Guo HM, Shen JX, Liu S, Ding SS, Hou WG, Ma J, Dong HL. Stimulation of Fe(II) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002. Environmental Science & Technology, 2016, 50(12):6449-6458.
    [64] Gilson ER, Huang S, Jaffé PR. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions. Biodegradation, 2015, 26(6):475-482.nology Letters, 2018, 5(9):571-577.
    [46] Li S, Kappler A, Zhu YG, Haderlein SB. Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth-Science Reviews, 2020, 208:103281.
    [47] Rue K, Rusevova K, Biles CL, Huling SG. Abiotic hydroxylamine nitrification involving manganese- and iron-bearing minerals. Science of the Total Environment, 2018, 644:567-575.
    [48] Amstaetter K, Borch T, Larese-Casanova P, Kappler A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environmental Science & Technology, 2010, 44(1):102-108.
    [49] Bird LJ, Bonnefoy V, Newman DK. Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology, 2011, 19(7):330-340.
    [50] Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron:anaer
    相似文献
    引证文献
引用本文

程宽,李涵,杜衍红,董海波,刘同旭. 微生物介导铁还原耦合氨氧化过程的研究进展[J]. 微生物学报, 2022, 62(6): 2249-2264

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-17
  • 最后修改日期:2022-03-31
  • 在线发布日期: 2022-06-13
文章二维码