培养条件对Shewanella oneidensis MR-1电极生物膜及细胞形貌的影响
作者:
基金项目:

国家自然科学基金(42077020);广东省基础与应用基础研究基金(2019A1515011033);广州市科技计划(201906010060)


Impact of culture conditions on the biofilm and cell morphology of Shewanella oneidensis MR-1
Author:
  • LONG Mingliang

    LONG Mingliang

    College of Material and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China;Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Xiao

    ZHU Xiao

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China;Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Fangbai

    LI Fangbai

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China;National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yundang

    WU Yundang

    Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 Shewanella oneidensis MR-1是电活性模式微生物,但目前仍缺乏对其细胞及生物膜形貌变化的系统研究,本研究旨在完善对其形貌特征的理解,为支持其作为模式微生物提供有力的基础数据。【方法】选取培养基类型、缓冲液浓度、维生素、微量元素、无机盐、电子穿梭体、电子供体、电子受体等培养条件作为变量,采用恒电位培养法获得生物膜,通过扫描电子显微镜对生物膜形貌进行观察。【结果】低浓度缓冲液中(30 mmol/L和100 mmol/L),其细胞多为短杆状,高浓度缓冲液中(200 mmol/L和300 mmol/L)细胞卷曲伸长;缺乏维生素、微量元素、无机盐则可使生物膜紧贴电极生长,变得致密;而穿梭体和电子受体对于S.oneidensis MR-1极为关键,前者的存在可显著促进生物膜的厚度,后者的缺失可迫使生物膜细胞裂解;此外,通过形貌研究发现,S.oneidensis MR-1可首尾相连形成超过100 μm的长线状结构。【结论】可通过改变缓冲液浓度、培养基类型、电子穿梭体和电子供受体等变量,实现Shewanella oneidensis MR-1电极生物膜及细胞形貌的调控。

    Abstract:

    [Objective] Although Shewanella oneidensis MR-1 is a typical electroactive model bacterium, its biofilm morphology remains to be systematically studied. This work aims to improve the understanding of biofilm morphology of S. oneidensis MR-1, thus providing basic data to support its role as a model strain. [Methods] Culture conditions such as medium type, buffer concentration, vitamins, trace elements, inorganic salts, electron shuttles, donors, and acceptors were taken as the variables to be studied. The biofilm was cultured under potentiostatic conditions and examined by scanning electron microscopy. [Results] The cells were mostly straight and short in low-concentration (30 mmol/L and 100 mmol/L) buffer solutions while became curled and elongated in high-concentration (200 mmol/L and 300 mmol/L) buffer solutions. The shortage of vitamins, trace elements, and inorganic salts made the biofilm become compact and attach closely to the electrode. The addition of an electron shuttle substantially thickened the biofilm, while a lack of an electron acceptor led to serious cell lysis within one day. In addition, a cable-like structure as long as 100 μm was observed in the biofilm, which indicated a long-distance electron transfer survival strategy of S. oneidensis MR-1. [Conclusion] Changing the medium type, buffer concentration, electron shuttles, donors, and acceptors can regulate the biofilm and cell morphology of S. oneidensis MR-1.

    参考文献
    [1] Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 2019, 17(5):307-319.
    [2] Yan YQ, Wang X, Ecological responses to substrates in electroactive biofilm:a review. Science China Technological Sciences, 2019, 62:1657-1669.
    [3] 张玉龙,陈雪丽,吴云当.电子穿梭体及其介导的环境与地球化学过程研究进展.生态环境学报, 2021, 30(1):213-222. Zhang YL, Chen XL, Wu YD. Electron shuttle-mediated microbial extracellular electron transfer:mechanisms and geochemical implications. Ecology and Environmental Sciences, 2021, 30(1):213-222.(in Chinese)
    [4] 黄玲艳,刘星,周顺桂.微生物直接种间电子传递:机制及应用.土壤学报, 2018, 55(6):1313-1324. Huang LY, Liu X, Zhou SG. Direct interspecies electron transfer of microbes:mechanism and application. Acta Pedologica Sinica, 2018, 55(6):1313-1324.(in Chinese)
    [5] 吴云当,李芳柏,刘同旭.土壤微生物-腐殖质-矿物间的胞外电子传递机制研究进展.土壤学报, 2016, 53(2):277-291. Wu YD, Li FB, Liu TX. Mechanism of extracellular electron transfer among microbe-humus-mineral in soil:a review. Acta Pedologica Sinica, 2016, 53(2):277-291.(in Chinese)
    [6] 孔冠楠,许玫英,杨永刚.基于直接接触的微生物胞外电子传递.微生物学报, 2017, 57(5):643-650. Kong GN, Xu MY, Yang YG. Direct contact-dependent microbial extracellular electron transfer. Acta Microbiologica Sinica, 2017, 57(5):643-650.(in Chinese)
    [7] 刘进超,王欧美,李佳佳,刘芳华.生物地球化学锰循环中的微生物胞外电子传递机制.微生物学报, 2018, 58(4):546-559. Liu JC, Wang OM, Li JJ, Liu FH. Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle. Acta Microbiologica Sinica, 2018, 58(4):546-559.(in Chinese)
    [8] Zhao F, Slade RCT, Varcoe JR. Techniques for the study and development of microbial fuel cells:an electrochemical perspective. Chemical Society Reviews, 2009, 38(7):1926-1939.
    [9] Yuan Y, Zhou SG, Liu Y, Tang JH. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environmental Science&Technology, 2013, 47(24):14525-14532.
    [10] Yang Y, Yu YY, Shi YT, Moradian JM, Yong YC. In vivo two-way redox cycling system for independent duplexed electrochemical signal amplification. Analytical Chemistry, 2019, 91(8):4939-4942.
    [11] Cheng L, Min D, Liu DF, Li WW, Yu HQ. Sensing and approaching toxic arsenate by Shewanella putrefaciens CN-32. Environmental Science&Technology, 2019, 53(24):14604-14611.
    [12] McCuskey SR, Su Y, Leifert D, Moreland AS, Bazan GC. Living bioelectrochemical composites. Advanced Materials, 2020, 32(24):1-6
    [13] Liu XW, Li WW, Yu HQ. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chemical Society Reviews, 2014, 43(22):7718-7745.
    [14] Feng CH, Li FB, Mai HJ, Li XZ. Bio-electro-fenton process driven by microbial fuel cell for wastewater treatment. Environmental Science&Technology, 2010, 44(5):1875-1880.
    [15] Gustave W, Yuan ZF, Li XJ, Ren YX, Feng WJ, Shen HB, Chen Z. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.). Environmental Pollution, 2020, 260:113989.
    [16] Wang XF, Aulenta F, Puig S, Esteve-Núñez A, He YJ, Mu Y, Rabaey K. Microbial electrochemistry for bioremediation. Environmental Science and Ecotechnology, 2020, 1:100013.
    [17] Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240(4857):1319-1321.
    [18] Lovley DR, Stolz JF, Nord GL, Phillips EJP. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330(6145):252-254.
    [19] Hau HH, Gralnick JA. Ecology and biotechnology of the genus Shewanella. Annual Review of Microbiology, 2007, 61(1):237-258.
    [20] Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 2008, 6(8):592-603.
    [21] Shi L, Dong HL, Reguera G, Beyenal H, Lu AH, Liu J, Yu HQ, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14(10):651-662.
    [22] Xu S, Jangir Y, El-Naggar MY. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochimica Acta, 2016, 198:49-55.
    [23] Liu W, Wu YD, Liu TX, Li FB, Dong H, Jing MQ. Influence of incubation temperature on 9, 10-anthraquinone-2-sulfonate (AQS)-mediated extracellular electron transfer. Frontiers in Microbiology, 2019, 10:464.
    [24] Chourey K, Thompson MR, Morrell-Falvey J, VerBerkmoes NC, Brown SD, Shah M, Zhou JZ, Doktycz M, Hettich RL, Thompson DK. Global molecular and morphological effects of 24-hour chromium (VI) exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2006, 72(9):6331-6344.
    [25] Patil SA, Górecki K, Hägerhäll C, Gorton L. Cisplatin-induced elongation of Shewanella oneidensis MR-1 cells improves microbe-electrode interactions for use in microbial fuel cells. Energy&Environmental Science, 2013, 6(9):2626-2630.
    [26] Lin ZX, Long ML, Liu W, Liu TX, Li FB, Wu YD. Distinct biofilm formation regulated by different culture media:implications to electricity generation. Bioelectrochemistry, 2021, 140:107826.
    [27] Wu YD, Luo XB, Qin BL, Li FB, Häggblom MM, Liu TX. Enhanced current production by exogenous electron mediators via synergy of promoting biofilm formation and the electron shuttling process. Environmental Science&Technology, 2020, 54(12):7217-7225.
    [28] Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Scientific Reports, 2014, 4(1):1-8.
    [29] Okamoto A, Hashimoto K, Nealson KH, Nakamura R. Rate enhanc?婭桥畮?娠???奢畡?塴奥???湬?獥楸瑴畲?浣潥汬敬捵畬污慲爠?楬浥慣杴楲湯杮?潴晲?瑮桳数?扲楴漠晩楮汶浯?慶湥摳?楢瑯獵?浤愠瑦牬楡硶???湳慥汭祩瑱極捩慮汯??桳攮洠楐獎瑁牓礬?′日????????㈱代????特?????㈱?监??戾牛?嬰??嵑??氠摂敌攬欠????卄挬栠湗敡楮摧攠片?刬???潥湮琠慘楌測攠??畯瀠慘牂琬??偩???甬猠瑌楩湵???????????捯慣牨瑥?卩???攠牣汯楮湳?????汴潳挠歯?????倠慩瑮琠敳物湴敵搠?桥祰摯牳潩灴桥潤戠楰捨?摮潯浸慡楺湩獮?椠湭?瑤桩敡?敥硤漠灥潬汥祣浴敲牯?洠慳瑨牵楴硴?潩普?匠桰敲睯慣湥敳汳氮愠?潬湥散楴摲敯湣獨楩獭??剡???扴楡漬映椲氰洲猰???瀳瀹氺椱攳搵?愳渴搮??湲瘾楛爳漱湝洠敚湨瑡慯氠??椬挠牄潯扮楧漠汈潌本礠???に????????????ちぷ???ぁ水??扩牵?孄??嵚?坡慮湧朠????婤桥慬湭条????奅愮渠杂?奯???塩畣??夠???楤晡晴畩獯楮漠湯?愠湆摥?昨楉汉愩洠敩湮琠潲略獤?扣慥捤琠敮牯楮慴?橯潮楩湴瑥氠祣?杵潰癬敥牤渠?瑩桴敨?獮灩慴瑲楡潴瑥攠浲灥潤牵慣汴?灯牮漠换敹猠獐?潥晵?獯畧汵晬楢摥敮?物敡浮潩癡愠汳?椮渠?獴敲摡楩浮攠渲琰‰洲椮挠片潥扯楣慨汩?晩畣敡氠?捴攠汃汯獳???桨敩浭楩捣慡氠??湴条椬渠攲攰爱椳測朠??漹町爲渳愱氭??祝?监?? ̄????ㄠ????い??扌物?孆??崠?乩極攠汔獘攬渠??偮??刬椠獌杵慯愠牘摂?倠数瑈攠牤獥数湥?乤???潥猠獯楦渠東?????桥爭業獥瑤敩湡獴敥湤?健???卡慣祥慬浬慵?????汬敥捣瑴牲楯据?捴畲牡牮敳湦瑥獲?捩潮甠灡氠敢?獯灥慬瑥楣慴汲汯祣?獥敭灩慣牡慬琠敳摹?扴楥潭朮攠潅捬桥散浴楲捯慣汨?灭物潣捡攠獁獣整獡?椠渲‰洱愶爬椠渲攱″猺攴搰椸洭攴渱琵??乢慲琾畛爳攳???て?て??????????????????は????戬爠?孯??崠??愬爠獂楥汳楥?????慥牲漠湆?????卥桲椠歒桌愬爠敋??????潮甠牋獕漬氠汓散?????牥慲氠湌椬挠歇??????潁測搠??刭??卧桧敡睲愠湍教氬氠慌?獵敮捧爠敋瑍攬猠?晣汨慲癡業湭猠?琬栠慒瑩?浧敡摡楲慤琭敐?整硥瑲牳慥据攠汎氬甠汎慩牥?敳汥敮挠瑌牐漮渠?瑩牬慡湭獥普整牯??倠乢?卣???どち????の???ひ?????????????扶牥?嬠??嵮??潭瑥汴潲獥欠楤?乳????牥慳氮渠楎捡歴??????氰愱瘲椬渠?改氱攨挷琴爲漳温?猲栱甸琭琲氲攱献?摢潲派楛渳愴瑝攠?攸砚琬牎慓揢攬沸沫痱氮憮爟?旞氖敿揝璻爵潐渠?瑑狜愔湶珛晕攮犮?扩祦?匬栠攲眰愲渰攬氠氶愰?漹温攺椲搰攷渲猭椲猰?″洮?楙潡??㈠す?????????攠じふ????ㄠ???扥牡?季??嵰??楧畲?味塳???甠潭?塣???坩畡?夠???割敡楣湥晬敬汵摬敡牲??副??夭畤慩湳?塡???椠?塬????桯敮渠??????楯??????硷瑯牲慫捳攮氠汁畣汴慡爠?敩汣敲捯瑢物潯湬?獧桩畣瑡琠汓楩湮杩?浡攬搠椲愰琲攰搬?戶礰?猹漩氺甲戰氷攲?挲?琸礳瀮攨?据礠瑃潨捩桮牥潳浥攩猼?灲爾潛搳电捝攠摙?扮祧?卙桇攬眠慗湡敮汧氠慚?漬渠敇楡摮攠湃獆椬猠??剡?????湌癈椬爠潂湯浮敮渦琣愲氳″医挠楒攬渠捋敯?呧攠捇桎測漠汌潵杯礠??水??づ????????????????ふ?????戠片?孯??崬??慡爠捙桘椬渠杂敪牥?卧???倬椠牍扡慮摣楡愠湊?匠??匠慍浙戬氠敎獩?????愠歌敐爬??卯???敍畄渮朠??????畩牳牴潡畮杣桥猠?乬????汯?丠慴杲条慮牳??奲???漠污戠敦捩歬?????副敵杳甠汇慲瑡業漭湰?潳晩?杩敶湥攠?敡硣灴牥敲獩獵業漮渠?楡湴?卲桥攠睃慯湭敭汵汮慩?潡湴敩楯摮敳測猠椲猰′?刬??′搨由爩椺渱朷‰改氮攼换瑲爾潛渳?慝挠捔敥灡瑬漠牔?氬椠浌楩瑥慳琠楄潐測?慗湯摬?戠慂捊琬攠牎楥慷汭?湮愠湄潋眮椠牓数?晴潩牯浭慥瑴楡潢湯???瀠灳汴楲敡摴?慦湩摣??湩癯楮爠潯湦洠敓湨瑥慷污??楬捬牡漠扯楮潥汩潤来祮??????????????????????????扅牮?孩??嵮??畮扴敡祬??偩???敢湩?奬敯桧畹搬愠′匰???渠琷攲爨挱攱氩氺男氳愲爴?渷愳渳漰琮甼扢敲猾?洳攷摝椠慓瑩敶?扫慵捭瑡敲爠楋愬氠?捵潫浨浥畲湪楥捥愠瑍椬漠湃???敧氠汈??㈠ず????ㄠ????????え??ぃち??扂爮?孓??嵦?卣略戠牤慩浳慰湬楡慹渠?偦??偯楇牆扐愠摦楯慲渠?卯???汯?乩慮杧朠慲牥??奸???敡湴獵敳渠?????啴汲瑡牣慥獬瑬牵畬捡瑲甠牭敩?潲景?卮桶敩睲慯湮敭汥汮慴?漠湩敮椠摓敨湥獷楡獮??剬?ㄠ?湮慥湩潤睥楮牳敩獳?牢敩癯敦慩汬敭摳?戠祂?敯汴敥捣瑨牮潯湬?捧特礠潡瑮潤洠潂杩牯慥灮桧祩??健乲?卮??㈠?????ㄠ???ㄨ?????有?????监????戳爸?嬠??嵮?倠楙牚戬愠摚楨慯湵?卙???慙牡捯栠楊測朠敓牺?卭????敩甠湃本??????祩畣湫??卮???愠湓杨楩爠?夬???潯甠桂攬渀渀椀?刀???刀攀攀搀?匀???刀漀洀椀渀攀?????匀愀昀昀愀爀椀渀椀?????匀栀椀?????漀爀戀礀?夀????漀氀戀攀挀欀??????氀?一愀最最愀爀??夀??匀栀攀眀愀渀攀氀氀愀?漀渀攀椀搀攀渀猀椀猀??刀???渀愀渀漀眀椀爀攀猀?愀爀攀?漀甀琀攀爀?洀攀洀戀爀愀渀攀?愀渀搀?瀀攀爀椀瀀氀愀猀洀椀挀?攀砀琀攀渀猀椀漀渀猀?漀昀?琀栀攀?攀砀琀爀愀挀攀氀氀甀氀愀爀?攀氀攀挀琀爀漀渀?琀爀愀渀猀瀀漀爀琀?挀漀洀瀀漀渀攀渀琀猀??倀一?匀??? ?????????????????????????戀爀?嬀??崀?倀漀猀瀀????????????椀氀????嘀??????琀漀瘀猀欀???????????漀昀爀漀??????漀瘀???????伀???甀挀栀漀瘀????????????????愀渀搀攀爀漀瘀???????????甀戀??????氀攀欀??????????椀欀漀瘀???????????漀搀爀??????欀?????攀渀愀搀愀?伀???愀爀??????欀?????爀??????猀渀???????????愀挀琀攀爀椀愀氀?渀愀渀漀琀甀戀攀猀?愀猀?愀?洀愀渀椀昀攀猀琀愀琀椀漀渀?漀昀?挀攀氀氀?搀攀愀琀栀??一愀琀甀爀攀??漀洀洀甀渀椀挀愀琀椀漀渀猀??? ? ?????????????戀爀?嬀? 崀?倀愀愀氀洀攀?吀???氀欀攀渀?刀???愀栀爀甀????嘀愀渀愀琀愀氀甀????嘀椀氀甀?刀??吀栀攀?最爀漀眀琀栀?爀愀琀攀?挀漀渀琀爀漀氀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀?愀琀?渀攀愀爀?琀漀?洀愀砀椀洀甀洀?最爀漀眀琀栀?爀愀琀攀猀?琀栀攀???猀琀愀琀?愀瀀瀀爀漀愀挀栀???渀琀漀渀椀攀?嘀愀渀??攀攀甀眀攀渀栀漀攀欀???????????????????? ??戀爀?嬀??崀????????搀攀欀攀????倀愀甀氀?????愀猀猀愀欀????吀栀漀爀洀愀渀渀?????倀栀愀最攀?椀渀搀甀挀攀搀?氀礀猀椀猀?攀渀栀愀渀挀攀猀?戀椀漀昀椀氀洀?昀漀爀洀愀琀椀漀渀?椀渀?匀栀攀眀愀渀攀氀氀愀?漀渀攀椀搀攀渀猀椀猀??刀????吀栀攀??匀????漀甀爀渀愀氀??? ??????????????????戀爀?嬀??崀??椀洀????倀爀漀最爀愀洀洀攀搀?搀攀愀琀栀?椀渀?戀愀挀琀攀爀椀愀???椀挀爀漀戀椀漀氀漀最礀?愀渀搀??漀氀攀挀甀氀愀爀??椀漀氀漀最礀?刀攀瘀椀攀眀猀???   ????????? ??????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龙明亮,朱潇,李芳柏,吴云当. 培养条件对Shewanella oneidensis MR-1电极生物膜及细胞形貌的影响[J]. 微生物学报, 2022, 62(6): 2265-2276

复制
分享
文章指标
  • 点击次数:518
  • 下载次数: 1419
  • HTML阅读次数: 1478
  • 引用次数: 0
历史
  • 收稿日期:2021-09-01
  • 最后修改日期:2021-12-01
  • 在线发布日期: 2022-06-13
文章二维码